These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 20479005)
1. WITHDRAWN: A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. Yadav V; Kumar M; Deep DK; Kumar H; Sharma R; Tripathi T; Tuteja N; Saxena AK; Johri AK J Biol Chem; 2010 Aug; 285(34):26532-44. PubMed ID: 20479005 [TBL] [Abstract][Full Text] [Related]
2. Biochemical characterization of a high affinity phosphate transporter (PiPT) from root endophyte fungus Piriformospora indica. Kumar H; Bajaj A; Kumar P; Aggarwal R; Chalia V; Pradhan RK; Yadav R; Sinha S; Agarwal V; Harries W; Dua M; Stroud RM; Johri AK Protein Expr Purif; 2024 Nov; 223():106559. PubMed ID: 39089400 [TBL] [Abstract][Full Text] [Related]
3. Piriformospora indica enhances plant growth by transferring phosphate. Kumar M; Yadav V; Kumar H; Sharma R; Singh A; Tuteja N; Johri AK Plant Signal Behav; 2011 May; 6(5):723-5. PubMed ID: 21502815 [TBL] [Abstract][Full Text] [Related]
4. The conservation of phosphate-binding residues among PHT1 transporters suggests that distinct transport affinities are unlikely to result from differences in the phosphate-binding site. Ceasar SA; Baker A; Muench SP; Ignacimuthu S; Baldwin SA Biochem Soc Trans; 2016 Oct; 44(5):1541-1548. PubMed ID: 27911737 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. Sawers RJ; Svane SF; Quan C; Grønlund M; Wozniak B; Gebreselassie MN; González-Muñoz E; Chávez Montes RA; Baxter I; Goudet J; Jakobsen I; Paszkowski U New Phytol; 2017 Apr; 214(2):632-643. PubMed ID: 28098948 [TBL] [Abstract][Full Text] [Related]
7. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Tian H; Drijber RA; Li X; Miller DN; Wienhold BJ Mycorrhiza; 2013 Aug; 23(6):507-14. PubMed ID: 23467773 [TBL] [Abstract][Full Text] [Related]
8. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Harrison MJ; Dewbre GR; Liu J Plant Cell; 2002 Oct; 14(10):2413-29. PubMed ID: 12368495 [TBL] [Abstract][Full Text] [Related]
9. Neighboring plants divergently modulate effects of loss-of-function in maize mycorrhizal phosphate uptake on host physiology and root fungal microbiota. Fabiańska I; Pesch L; Koebke E; Gerlach N; Bucher M PLoS One; 2020; 15(6):e0232633. PubMed ID: 32555651 [TBL] [Abstract][Full Text] [Related]
10. A putative cyclin, SiPHO80 from root endophytic fungus Serendipita indica regulates phosphate homeostasis, salinity and heavy metal toxicity tolerance. Loha A; Kashyap AK; Sharma P Biochem Biophys Res Commun; 2018 Dec; 507(1-4):414-419. PubMed ID: 30446223 [TBL] [Abstract][Full Text] [Related]
11. A novel plant-fungus symbiosis benefits the host without forming mycorrhizal structures. Kariman K; Barker SJ; Jost R; Finnegan PM; Tibbett M New Phytol; 2014 Mar; 201(4):1413-1422. PubMed ID: 24279681 [TBL] [Abstract][Full Text] [Related]
12. Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Johri AK; Oelmüller R; Dua M; Yadav V; Kumar M; Tuteja N; Varma A; Bonfante P; Persson BL; Stroud RM Front Microbiol; 2015; 6():984. PubMed ID: 26528243 [TBL] [Abstract][Full Text] [Related]
13. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Harrison MJ; van Buuren ML Nature; 1995 Dec; 378(6557):626-9. PubMed ID: 8524398 [TBL] [Abstract][Full Text] [Related]
14. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Deshmukh S; Hückelhoven R; Schäfer P; Imani J; Sharma M; Weiss M; Waller F; Kogel KH Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18450-7. PubMed ID: 17116870 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization of a high-affinity iron transporter (PiFTR) from the endophytic fungus Piriformospora indica and its role in plant growth and development. Verma N; Narayan OP; Prasad D; Jogawat A; Panwar SL; Dua M; Johri AK Environ Microbiol; 2022 Feb; 24(2):689-706. PubMed ID: 34227231 [TBL] [Abstract][Full Text] [Related]
16. Key computational findings reveal proton transfer as driving the functional cycle in the phosphate transporter PiPT. Liu Y; Li C; Gupta M; Verma N; Johri AK; Stroud RM; Voth GA Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34135124 [TBL] [Abstract][Full Text] [Related]
17. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Glassop D; Smith SE; Smith FW Planta; 2005 Nov; 222(4):688-98. PubMed ID: 16133217 [TBL] [Abstract][Full Text] [Related]
18. A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Maldonado-Mendoza IE; Dewbre GR; Harrison MJ Mol Plant Microbe Interact; 2001 Oct; 14(10):1140-8. PubMed ID: 11605953 [TBL] [Abstract][Full Text] [Related]
19. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. Ghabooli M; Khatabi B; Ahmadi FS; Sepehri M; Mirzaei M; Amirkhani A; Jorrín-Novo JV; Salekdeh GH J Proteomics; 2013 Dec; 94():289-301. PubMed ID: 24120527 [TBL] [Abstract][Full Text] [Related]
20. Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. Xie X; Huang W; Liu F; Tang N; Liu Y; Lin H; Zhao B New Phytol; 2013 May; 198(3):836-852. PubMed ID: 23442117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]