BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 20479006)

  • 61. Three-dimensional structure of p21 in the active conformation and analysis of an oncogenic mutant.
    Wittinghofer F; Krengel U; John J; Kabsch W; Pai EF
    Environ Health Perspect; 1991 Jun; 93():11-5. PubMed ID: 1773783
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase.
    Kosami K; Ohki I; Nagano M; Furuita K; Sugiki T; Kawano Y; Kawasaki T; Fujiwara T; Nakagawa A; Shimamoto K; Kojima C
    J Biol Chem; 2014 Oct; 289(41):28569-78. PubMed ID: 25128531
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrostatic control of GTP and GDP binding in the oncoprotein p21ras.
    Muegge I; Schweins T; Langen R; Warshel A
    Structure; 1996 Apr; 4(4):475-89. PubMed ID: 8740369
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution.
    Vo U; Vajpai N; Embrey KJ; Golovanov AP
    Sci Rep; 2016 Jul; 6():29706. PubMed ID: 27412770
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Glucosylation of Ras by Clostridium sordellii lethal toxin: consequences for effector loop conformations observed by NMR spectroscopy.
    Geyer M; Wilde C; Selzer J; Aktories K; Kalbitzer HR
    Biochemistry; 2003 Oct; 42(41):11951-9. PubMed ID: 14556626
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Crystal structure of the core domain of RhoE/Rnd3: a constitutively activated small G protein.
    Garavini H; Riento K; Phelan JP; McAlister MS; Ridley AJ; Keep NH
    Biochemistry; 2002 May; 41(20):6303-10. PubMed ID: 12009891
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-resolution crystal structure of S. cerevisiae Ypt51(DeltaC15)-GppNHp, a small GTP-binding protein involved in regulation of endocytosis.
    Esters H; Alexandrov K; Constantinescu AT; Goody RS; Scheidig AJ
    J Mol Biol; 2000 Apr; 298(1):111-21. PubMed ID: 10756108
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Role of glycine-82 as a pivot point during the transition from the inactive to the active form of the yeast Ras2 protein.
    Kavounis C; Verrotti AC; De Vendittis E; Bozopoulos A; Di Blasi F; Zahn R; Crechet JB; Parmeggiani A; Tsernoglou D; Fasano O
    FEBS Lett; 1991 Apr; 281(1-2):235-9. PubMed ID: 1901802
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NMR
    Sharma AK; Lee SJ; Rigby AC; Townson SA
    Biomol NMR Assign; 2018 Oct; 12(2):269-272. PubMed ID: 29721757
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An open conformation of switch I revealed by the crystal structure of a Mg2+-free form of RHOA complexed with GDP. Implications for the GDP/GTP exchange mechanism.
    Shimizu T; Ihara K; Maesaki R; Kuroda S; Kaibuchi K; Hakoshima T
    J Biol Chem; 2000 Jun; 275(24):18311-7. PubMed ID: 10748207
    [TBL] [Abstract][Full Text] [Related]  

  • 71. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.
    Ostrem JM; Peters U; Sos ML; Wells JA; Shokat KM
    Nature; 2013 Nov; 503(7477):548-51. PubMed ID: 24256730
    [TBL] [Abstract][Full Text] [Related]  

  • 72. pH-dependent perturbation of Ras-guanine nucleotide interactions and Ras guanine nucleotide exchange.
    Heo J; Gao G; Campbell SL
    Biochemistry; 2004 Aug; 43(31):10102-11. PubMed ID: 15287738
    [TBL] [Abstract][Full Text] [Related]  

  • 73.
    Pálfy G; Vida I; Perczel A
    Biomol NMR Assign; 2020 Apr; 14(1):1-7. PubMed ID: 31468366
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structures of N-terminally processed KRAS provide insight into the role of N-acetylation.
    Dharmaiah S; Tran TH; Messing S; Agamasu C; Gillette WK; Yan W; Waybright T; Alexander P; Esposito D; Nissley DV; McCormick F; Stephen AG; Simanshu DK
    Sci Rep; 2019 Jul; 9(1):10512. PubMed ID: 31324887
    [TBL] [Abstract][Full Text] [Related]  

  • 75. SmgGDS displays differential binding and exchange activity towards different Ras isoforms.
    Vikis HG; Stewart S; Guan KL
    Oncogene; 2002 Apr; 21(15):2425-32. PubMed ID: 11948427
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Flow cytometry for real-time measurement of guanine nucleotide binding and exchange by Ras-like GTPases.
    Schwartz SL; Tessema M; Buranda T; Pylypenko O; Rak A; Simons PC; Surviladze Z; Sklar LA; Wandinger-Ness A
    Anal Biochem; 2008 Oct; 381(2):258-66. PubMed ID: 18638444
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The structure of human neuronal Rab6B in the active and inactive form.
    Garcia-Saez I; Tcherniuk S; Kozielski F
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):725-33. PubMed ID: 16790928
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis.
    Ma J; Karplus M
    J Mol Biol; 1997 Nov; 274(1):114-31. PubMed ID: 9398520
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins.
    Milburn MV; Tong L; deVos AM; Brünger A; Yamaizumi Z; Nishimura S; Kim SH
    Science; 1990 Feb; 247(4945):939-45. PubMed ID: 2406906
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Conformational Dynamics Allows Sampling of an "Active-like" State by Oncogenic K-Ras-GDP.
    Grudzien P; Jang H; Leschinsky N; Nussinov R; Gaponenko V
    J Mol Biol; 2022 Sep; 434(17):167695. PubMed ID: 35752212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.