These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20479268)

  • 21. Deep water cuspate stromatolites of the Cryogenian Trezona Formation.
    O'Connell B; Wallace MW; Hood AVS; Rebbechi L; Brooks HL
    Geobiology; 2022 Mar; 20(2):194-215. PubMed ID: 34914161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites.
    Bosak T; Greene SE; Newman DK
    Geobiology; 2007 Jun; 5(2):119-126. PubMed ID: 20890383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites.
    Bartley JK; Kah LC; Frank TD; Lyons TW
    Geobiology; 2015 Jan; 13(1):15-32. PubMed ID: 25354129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic?
    Shapiro RS; Konhauser KO
    Geobiology; 2015 May; 13(3):209-24. PubMed ID: 25639940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites.
    Allwood AC; Burch IW; Rouchy JM; Coleman M
    Astrobiology; 2013 Sep; 13(9):870-86. PubMed ID: 24047112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen.
    Knoll AH; Swett K; Burkhardt E
    J Paleontol; 1989; 63(2):129-45. PubMed ID: 11538341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conserved bacterial genomes from two geographically isolated peritidal stromatolite formations shed light on potential functional guilds.
    Waterworth SC; Isemonger EW; Rees ER; Dorrington RA; Kwan JC
    Environ Microbiol Rep; 2021 Apr; 13(2):126-137. PubMed ID: 33369160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth of modern branched columnar stromatolites in Lake Joyce, Antarctica.
    Mackey TJ; Sumner DY; Hawes I; Jungblut AD; Andersen DT
    Geobiology; 2015 Jul; 13(4):373-90. PubMed ID: 25867791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stromatolite reef from the Early Archaean era of Australia.
    Allwood AC; Walter MR; Kamber BS; Marshall CP; Burch IW
    Nature; 2006 Jun; 441(7094):714-8. PubMed ID: 16760969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: paleoecological and taxonomic implications.
    Seong-Joo L; Golubic S
    Lethaia; 1998 Sep; 31(3):169-84. PubMed ID: 11542928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Community living long before man: fossil and living microbial mats and early life.
    Margulis L; Lopez Baluja L; Awramik SM; Sagan D
    Sci Total Environ; 1986; 56():379-97. PubMed ID: 11542059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oldest records of photosynthesis.
    Awramik SM
    Photosynth Res; 1992 Aug; 33(2):75-89. PubMed ID: 24408570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland.
    Allwood AC; Rosing MT; Flannery DT; Hurowitz JA; Heirwegh CM
    Nature; 2018 Nov; 563(7730):241-244. PubMed ID: 30333621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of growth directions of columnar stromatolites from Walker Lake, western Nevada.
    Petryshyn VA; Corsetti FA
    Geobiology; 2011 Sep; 9(5):425-35. PubMed ID: 21884363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heliotropism in modern stromatolites.
    Awramik SM; Vanyo JP
    Science; 1986 Mar; 231(4743):1279-81. PubMed ID: 17839566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Living phosphatic stromatolites in a low-phosphorus environment: Implications for the use of phosphorus as a proxy for phosphate levels in paleo-systems.
    Büttner SH; Isemonger EW; Isaacs M; van Niekerk D; Sipler RE; Dorrington RA
    Geobiology; 2021 Jan; 19(1):35-47. PubMed ID: 33067916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes.
    Buick R
    Science; 1992 Jan; 255(5040):74-7. PubMed ID: 11536492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmental influences on living marine stromatolites: insights from benthic microalgal communities.
    Rishworth GM; van Elden S; Perissinotto R; Miranda NA; Steyn PP; Bornman TG
    Environ Microbiol; 2016 Feb; 18(2):503-13. PubMed ID: 26549416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites, Western Australia.
    Wacey D; Urosevic L; Saunders M; George AD
    Geobiology; 2018 Mar; 16(2):203-215. PubMed ID: 29318763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abiological origin of described stromatolites older than 3.2 Ga.
    Lowe DR
    Geology; 1994 May; 22():387-90. PubMed ID: 11540142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.