BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20479432)

  • 21. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors.
    Lin CY; Chang YH; Kao CY; Lu CH; Sung LY; Yen TC; Lin KJ; Hu YC
    Biomaterials; 2012 May; 33(14):3682-92. PubMed ID: 22361095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b.
    Liao YH; Chang YH; Sung LY; Li KC; Yeh CL; Yen TC; Hwang SM; Lin KJ; Hu YC
    Biomaterials; 2014 Jun; 35(18):4901-10. PubMed ID: 24674465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osteogenic potential of recombinant human bone morphogenetic protein-9/absorbable collagen sponge (rhBMP-9/ACS) in rat critical size calvarial defects.
    Nakamura T; Shirakata Y; Shinohara Y; Miron RJ; Furue K; Noguchi K
    Clin Oral Investig; 2017 Jun; 21(5):1659-1665. PubMed ID: 27726024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone Morphogenetic Protein-9-Stimulated Adipocyte-Derived Mesenchymal Progenitors Entrapped in a Thermoresponsive Nanocomposite Scaffold Facilitate Cranial Defect Repair.
    Lee CS; Bishop ES; Dumanian Z; Zhao C; Song D; Zhang F; Zhu Y; Ameer GA; He TC; Reid RR
    J Craniofac Surg; 2019 Sep; 30(6):1915-1919. PubMed ID: 30896511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects.
    Hwang HD; Lee JT; Koh JT; Jung HM; Lee HJ; Kwon TG
    Tissue Eng Part A; 2015 Jul; 21(13-14):2125-35. PubMed ID: 25919507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Repair of calvarial defects with human umbilical cord blood derived mesenchymal stem cells and demineralized bone matrix in athymic rats].
    Liu GP; Li YL; Sun J; Cui L; Zhang WJ; Cao YL
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2010 Jan; 26(1):34-8. PubMed ID: 20432924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels.
    Kim S; Kim J; Gajendiran M; Yoon M; Hwang MP; Wang Y; Kang BJ; Kim K
    Biomacromolecules; 2018 Nov; 19(11):4239-4249. PubMed ID: 30231204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects.
    Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects.
    Naudot M; Garcia Garcia A; Jankovsky N; Barre A; Zabijak L; Azdad SZ; Collet L; Bedoui F; Hébraud A; Schlatter G; Devauchelle B; Marolleau JP; Legallais C; Le Ricousse S
    J Tissue Eng Regen Med; 2020 Nov; 14(11):1570-1580. PubMed ID: 32755059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor.
    Hayashi C; Hasegawa U; Saita Y; Hemmi H; Hayata T; Nakashima K; Ezura Y; Amagasa T; Akiyoshi K; Noda M
    J Cell Physiol; 2009 Jul; 220(1):1-7. PubMed ID: 19301257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors.
    Zhou C; Ye C; Zhao C; Liao J; Li Y; Chen H; Huang W
    Med Sci Monit; 2020 Sep; 26():e924666. PubMed ID: 32894745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of a Bioceramic Scaffold and Simvastatin Nanoparticles as a Synthetic Alternative to Autologous Bone Grafting.
    Wang CZ; Wang YH; Lin CW; Lee TC; Fu YC; Ho ML; Wang CK
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30567319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of In Vivo Osteogenic Potential of Bone Morphogenetic Protein 2-Overexpressing Human Periodontal Ligament Stem Cells Combined with Biphasic Calcium Phosphate Block Scaffolds in a Critical-Size Bone Defect Model.
    Yi T; Jun CM; Kim SJ; Yun JH
    Tissue Eng Part A; 2016 Mar; 22(5-6):501-12. PubMed ID: 26825430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of the effects of recombinant human bone morphogenetic protein-2 and -9 on bone formation in rat calvarial critical-size defects.
    Nakamura T; Shirakata Y; Shinohara Y; Miron RJ; Hasegawa-Nakamura K; Fujioka-Kobayashi M; Noguchi K
    Clin Oral Investig; 2017 Dec; 21(9):2671-2679. PubMed ID: 28197731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of bone morphogenetic protein-2 delivery systems to induce supracrestal bone guided by titanium implants in the rabbit mandible.
    Wen B; Kuhn L; Charles L; Pendrys D; Shafer D; Freilich M
    Clin Oral Implants Res; 2016 Jun; 27(6):676-85. PubMed ID: 26183057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds.
    Lappalainen OP; Karhula S; Haapea M; Kyllönen L; Haimi S; Miettinen S; Saarakkala S; Korpi J; Ylikontiola LP; Serlo WS; Sándor GK
    Childs Nerv Syst; 2016 Apr; 32(4):681-8. PubMed ID: 26782995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinspired nanocomposite fibrous scaffold mediated delivery of ONO-1301 and BMP2 enhance bone regeneration in critical sized defect.
    Kuttappan S; Jo JI; Sabu CK; Menon D; Tabata Y; Nair MB
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110591. PubMed ID: 32204057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.