These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 20479499)

  • 1. Inferring contagion in regulatory networks.
    Fujita A; Sato JR; Angelo M; Demasi A; Yamaguchi R; Shimamura T; Ferreira CE; Sogayar MC; Miyano S
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):570-76. PubMed ID: 20479499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring connectivity of genetic regulatory networks using information-theoretic criteria.
    Zhao W; Serpedin E; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(2):262-74. PubMed ID: 18451435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective non-linear methods for inferring genetic regulation from time-series microarray gene expression data.
    Wang J; Tian T
    Methods Mol Biol; 2012; 802():235-46. PubMed ID: 22130884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics.
    Yang C; Wei H
    Mol Plant; 2015 Feb; 8(2):196-206. PubMed ID: 25680773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method.
    Fujita A; Sato JR; Garay-Malpartida HM; Morettin PA; Sogayar MC; Ferreira CE
    Bioinformatics; 2007 Jul; 23(13):1623-30. PubMed ID: 17463021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A tutorial to identify nonlinear associations in gene expression time series data.
    Fujita A; Miyano S
    Methods Mol Biol; 2014; 1164():87-95. PubMed ID: 24927837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse engineering of gene networks with LASSO and nonlinear basis functions.
    Gustafsson M; Hörnquist M; Lundström J; Björkegren J; Tegnér J
    Ann N Y Acad Sci; 2009 Mar; 1158():265-75. PubMed ID: 19348648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identify condition-specific gene co-expression networks.
    Kalluru V; Machiraju R; Huang K
    Int J Comput Biol Drug Des; 2013; 6(1-2):50-9. PubMed ID: 23428473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic dynamic modeling of short gene expression time-series data.
    Wang Z; Yang F; Ho DW; Swift S; Tucker A; Liu X
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):44-55. PubMed ID: 18334455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid approach to gene ranking using gene relation networks derived from literature for the identification of disease gene markers.
    Shin M; Lee H; Hong M
    Int J Data Min Bioinform; 2012; 6(3):239-54. PubMed ID: 23155760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring gene networks: dream or nightmare?
    Baralla A; Mentzen WI; de la Fuente A
    Ann N Y Acad Sci; 2009 Mar; 1158():246-56. PubMed ID: 19348646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data.
    Soranzo N; Bianconi G; Altafini C
    Bioinformatics; 2007 Jul; 23(13):1640-7. PubMed ID: 17485431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using evolutional properties of gene networks in understanding survival prognosis of glioblastoma.
    Upton A; Arvanitis TN
    IEEE J Biomed Health Inform; 2014 May; 18(3):810-6. PubMed ID: 24058043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of directionality for co-expressed genes: predicting intra-operon termination sites.
    Gupta A; Maranas CD; Albert R
    Bioinformatics; 2006 Jan; 22(2):209-14. PubMed ID: 16287937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choosing the right path: enhancement of biologically relevant sets of genes or proteins using pathway structure.
    Thomas R; Gohlke JM; Stopper GF; Parham FM; Portier CJ
    Genome Biol; 2009; 10(4):R44. PubMed ID: 19393085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy of a network ensemble: definitions and applications to genomic data.
    Menichetti G; Remondini D
    Theor Biol Forum; 2014; 107(1-2):77-87. PubMed ID: 25936214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.