These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 20479517)

  • 1. A fuzzy convolution model for radiobiologically optimized radiotherapy margins.
    Mzenda B; Hosseini-Ashrafi M; Gegov A; Brown DJ
    Phys Med Biol; 2010 Jun; 55(11):3219-35. PubMed ID: 20479517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Asymmetric Margins in Prostate Cancer Radiation Therapy Using Fuzzy Logic.
    Patnaikuni SK; Saini SM; Chandola RM; Chandrakar P; Chaudhary V
    J Med Phys; 2020; 45(2):88-97. PubMed ID: 32831491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal Tissue Risk Estimation Using Biological Knowledge-Based Fuzzy Logic in Volumetric Modulated Arc Therapy of Prostate Cancer: Rectum.
    Patnaikuni SK; Saini SM; Chandola RM; Chandrakar P; Chaudhary V
    J Med Phys; 2022; 47(2):126-135. PubMed ID: 36212203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.
    Jiang R; Barnett RB; Chow JC; Chen JZ
    Phys Med Biol; 2007 Mar; 52(5):1469-84. PubMed ID: 17301465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving margins in prostate cancer radiotherapy treatment: comparison of neural network and fuzzy logic models.
    Mzenda B; Gegov A; Brown DJ; Petrov N
    Int J Bioinform Res Appl; 2012; 8(5-6):325-41. PubMed ID: 23060414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On probabilistically defined margins in radiation therapy.
    Papiez L; Langer M
    Phys Med Biol; 2006 Aug; 51(16):3921-39. PubMed ID: 16885615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiobiological impact of reduced margins and treatment technique for prostate cancer in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP).
    Jensen I; Carl J; Lund B; Larsen EH; Nielsen J
    Med Dosim; 2011; 36(2):130-7. PubMed ID: 20488692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse planning incorporating organ motion.
    Li JG; Xing L
    Med Phys; 2000 Jul; 27(7):1573-8. PubMed ID: 10947260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy for online correction of rotational organ motion for intensity-modulated radiotherapy of prostate cancer.
    Rijkhorst EJ; van Herk M; Lebesque JV; Sonke JJ
    Int J Radiat Oncol Biol Phys; 2007 Dec; 69(5):1608-17. PubMed ID: 17919845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of different urethrogram protocols can influence the definition of planning target volume inferior margin in prostate cancer radiotherapy. In regard to Liu et al.: prostate movement during simulation resulting from retrograde urethrogram compared with "natural" prostate movement (INT J RADIAT ONCOL BIOL PHYS 2004;60:470-475).
    Russi EG; Taglianti RV; Airaldi C
    Int J Radiat Oncol Biol Phys; 2005 Mar; 61(4):1278; author reply 1278-9. PubMed ID: 15752914
    [No Abstract]   [Full Text] [Related]  

  • 11. Internal fiducial markers can assist dose escalation in treatment of prostate cancer: result of organ motion simulations.
    Zhang M; Moiseenko V; Liu M; Craig T
    Phys Med Biol; 2006 Jan; 51(2):269-85. PubMed ID: 16394338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic localization of the prostate for on-line or off-line image-guided radiotherapy.
    Smitsmans MH; Wolthaus JW; Artignan X; de Bois J; Jaffray DA; Lebesque JV; van Herk M
    Int J Radiat Oncol Biol Phys; 2004 Oct; 60(2):623-35. PubMed ID: 15380600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of dose compensation in image-guided radiotherapy of prostate cancer.
    Wu Q; Liang J; Yan D
    Phys Med Biol; 2006 Mar; 51(6):1405-19. PubMed ID: 16510952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiotherapy margin design with particular consideration of high curvature CTVs.
    Herschtal A; Kron T; Fox C
    Med Phys; 2009 Mar; 36(3):684-97. PubMed ID: 19378729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors.
    Gordon JJ; Siebers JV
    Phys Med Biol; 2007 Apr; 52(7):1967-90. PubMed ID: 17374922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Margins for treatment planning of proton therapy.
    Thomas SJ
    Phys Med Biol; 2006 Mar; 51(6):1491-501. PubMed ID: 16510958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT-guided intensity-modulated radiotherapy for bladder cancer: isocentre shifts, margins and their impact on target dose.
    Redpath AT; Muren LP
    Radiother Oncol; 2006 Dec; 81(3):276-83. PubMed ID: 17113669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Margins for geometric uncertainty around organs at risk in radiotherapy.
    McKenzie A; van Herk M; Mijnheer B
    Radiother Oncol; 2002 Mar; 62(3):299-307. PubMed ID: 12175561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to calculate coverage probability from uncertainties in radiotherapy via a statistical shape model.
    Price GJ; Moore CJ
    Phys Med Biol; 2007 Apr; 52(7):1947-65. PubMed ID: 17374921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust treatment planning for intensity modulated radiotherapy of prostate cancer based on coverage probabilities.
    Baum C; Alber M; Birkner M; Nüsslin F
    Radiother Oncol; 2006 Jan; 78(1):27-35. PubMed ID: 16216359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.