These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20479750)

  • 1. Glycan chain-length control.
    Whitfield C
    Nat Chem Biol; 2010 Jun; 6(6):403-4. PubMed ID: 20479750
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial cell surface carbohydrates: structure and assembly.
    Hancock IC
    Biochem Soc Trans; 1997 Feb; 25(1):183-7. PubMed ID: 9056868
    [No Abstract]   [Full Text] [Related]  

  • 3. Bacterial cell-wall recycling.
    Johnson JW; Fisher JF; Mobashery S
    Ann N Y Acad Sci; 2013 Jan; 1277(1):54-75. PubMed ID: 23163477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways.
    Caveney NA; Li FK; Strynadka NC
    Curr Opin Struct Biol; 2018 Dec; 53():45-58. PubMed ID: 29885610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems.
    Moynihan PJ; Clarke AJ
    Int J Biochem Cell Biol; 2011 Dec; 43(12):1655-9. PubMed ID: 21889603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate analogues to study cell-wall biosynthesis and its inhibition.
    Lazar K; Walker S
    Curr Opin Chem Biol; 2002 Dec; 6(6):786-93. PubMed ID: 12470732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptidoglycan Isolation and Binding Studies with LysM-Type Pattern Recognition Receptors.
    Bertsche U; Gust AA
    Methods Mol Biol; 2017; 1578():1-12. PubMed ID: 28220411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis of diversity in bacterial glycan chain-termination chemistry and organization of carbohydrate-binding modules linked to ABC transporters.
    Mann E; Kimber MS; Whitfield C
    Glycobiology; 2019 Nov; 29(12):822-838. PubMed ID: 31504498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell wall structure and function in lactic acid bacteria.
    Chapot-Chartier MP; Kulakauskas S
    Microb Cell Fact; 2014 Aug; 13 Suppl 1(Suppl 1):S9. PubMed ID: 25186919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assays for the Enzymes Catalyzing the O-Acetylation of Bacterial Cell Wall Polysaccharides.
    Brott AS; Sychantha D; Clarke AJ
    Methods Mol Biol; 2019; 1954():115-136. PubMed ID: 30864128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications.
    Liang H; DeMeester KE; Hou CW; Parent MA; Caplan JL; Grimes CL
    Nat Commun; 2017 Apr; 8():15015. PubMed ID: 28425464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane Translocation and Assembly of Sugar Polymer Precursors.
    Taylor VL; Huszczynski SM; Lam JS
    Curr Top Microbiol Immunol; 2017; 404():95-128. PubMed ID: 26853690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinate regulation of Gram-positive cell surface components.
    Hanson BR; Neely MN
    Curr Opin Microbiol; 2012 Apr; 15(2):204-10. PubMed ID: 22236805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Cell Mechanics.
    Auer GK; Weibel DB
    Biochemistry; 2017 Jul; 56(29):3710-3724. PubMed ID: 28666084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria.
    Weadge JT; Pfeffer JM; Clarke AJ
    BMC Microbiol; 2005 Aug; 5():49. PubMed ID: 16111493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architecture of peptidoglycan: more data and more models.
    Vollmer W; Seligman SJ
    Trends Microbiol; 2010 Feb; 18(2):59-66. PubMed ID: 20060721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The differentially spliced mouse tagL gene, homolog of tag7/PGRP gene family in mammals and Drosophila, can recognize Gram-positive and Gram-negative bacterial cell wall independently of T phage lysozyme homology domain.
    Kibardin AV; Mirkina II; Baranova EV; Zakeyeva IR; Georgiev GP; Kiselev SL
    J Mol Biol; 2003 Feb; 326(2):467-74. PubMed ID: 12559914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary studies on phage ViIII adsorption.
    Szczeklik H; Kwiatlowski B; Taylor A
    Folia Histochem Cytochem (Krakow); 1973; 11(3):300. PubMed ID: 4778385
    [No Abstract]   [Full Text] [Related]  

  • 19. A synthetic 5,3-cross-link in the cell wall of rod-shaped Gram-positive bacteria.
    Dik DA; Zhang N; Sturgell EJ; Sanchez BB; Chen JS; Webb B; Vanderpool KG; Schultz PG
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are gram-positive bacteria capable of electron transfer across their cell wall without an externally available electron shuttle?
    Ehrlich HL
    Geobiology; 2008 Jun; 6(3):220-4. PubMed ID: 18498525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.