These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 20479830)

  • 1. On-chip supercontinuum optical trapping and resonance excitation of microspheres.
    Nitkowski A; Gondarenko A; Lipson M
    Opt Lett; 2010 May; 35(10):1626-8. PubMed ID: 20479830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip.
    Cai H; Poon AW
    Lab Chip; 2012 Oct; 12(19):3803-9. PubMed ID: 22878866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator.
    Cai H; Poon AW
    Opt Lett; 2011 Nov; 36(21):4257-9. PubMed ID: 22048383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microlens-array-enabled on-chip optical trapping and sorting.
    Zhao X; Sun Y; Bu J; Zhu S; Yuan XC
    Appl Opt; 2011 Jan; 50(3):318-22. PubMed ID: 21263729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planar silicon microrings as wavelength-multiplexed optical traps for storing and sensing particles.
    Lin S; Crozier KB
    Lab Chip; 2011 Dec; 11(23):4047-51. PubMed ID: 22011760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser.
    Bragheri F; Ferrara L; Bellini N; Vishnubhatla KC; Minzioni P; Ramponi R; Osellame R; Cristiani I
    J Biophotonics; 2010 Apr; 3(4):234-43. PubMed ID: 20301123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities.
    Lin S; Crozier KB
    ACS Nano; 2013 Feb; 7(2):1725-30. PubMed ID: 23311448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrally reconfigurable integrated multi-spot particle trap.
    Leake KD; Olson MA; Ozcelik D; Hawkins AR; Schmidt H
    Opt Lett; 2015 Dec; 40(23):5435-8. PubMed ID: 26625019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanophotonic trapping for precise manipulation of biomolecular arrays.
    Soltani M; Lin J; Forties RA; Inman JT; Saraf SN; Fulbright RM; Lipson M; Wang MD
    Nat Nanotechnol; 2014 Jun; 9(6):448-52. PubMed ID: 24776649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic ring resonator switch for optical particle transport.
    Yang AH; Erickson D
    Lab Chip; 2010 Mar; 10(6):769-74. PubMed ID: 20221566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Raman tweezers by phase-sensitive detection.
    Rusciano G; De Luca AC; Sasso A; Pesce G
    Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.
    Farré A; van der Horst A; Blab GA; Downing BP; Forde NR
    J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels.
    Xuan X; Li D
    Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.
    Son M; Choi S; Ko KH; Kim MH; Lee SY; Key J; Yoon YR; Park IS; Lee SW
    Langmuir; 2016 Jan; 32(3):922-7. PubMed ID: 26734855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.