These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 20479830)

  • 61. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis.
    Hunt TP; Issadore D; Westervelt RM
    Lab Chip; 2008 Jan; 8(1):81-7. PubMed ID: 18094765
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.
    Chung SE; Lee SA; Kim J; Kwon S
    Lab Chip; 2009 Oct; 9(19):2845-50. PubMed ID: 19967123
    [TBL] [Abstract][Full Text] [Related]  

  • 64. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Particle separation in fluidic flow by optical fiber.
    Lei H; Zhang Y; Li B
    Opt Express; 2012 Jan; 20(2):1292-300. PubMed ID: 22274474
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Stability analysis of optofluidic transport on solid-core waveguiding structures.
    Yang AH; Erickson D
    Nanotechnology; 2008 Jan; 19(4):045704. PubMed ID: 21817521
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Planar optical tweezers using tapered-waveguide junctions.
    Cai H; Poon AW
    Opt Lett; 2012 Jul; 37(14):3000-2. PubMed ID: 22825205
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 70. All-in-One Optofluidic Chip for Molecular Biosensing Assays.
    Sano T; Zhang H; Losakul R; Schmidt H
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884304
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plasmonic optical trap having very large active volume realized with nano-ring structure.
    Kang Z; Zhang H; Lu H; Xu J; Ong HC; Shum P; Ho HP
    Opt Lett; 2012 May; 37(10):1748-50. PubMed ID: 22627558
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dynamic Self-Referencing Approach to Whispering Gallery Mode Biosensing and Its Application to Measurement within Undiluted Serum.
    Reynolds T; François A; Riesen N; Turvey ME; Nicholls SJ; Hoffmann P; Monro TM
    Anal Chem; 2016 Apr; 88(7):4036-40. PubMed ID: 26954108
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics.
    Jain A; Yang AH; Erickson D
    Opt Lett; 2012 May; 37(9):1472-4. PubMed ID: 22555708
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells.
    Burger R; Kurzbuch D; Gorkin R; Kijanka G; Glynn M; McDonagh C; Ducrée J
    Lab Chip; 2015 Jan; 15(2):378-81. PubMed ID: 25407668
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Caged-Sphere Optofluidic Sensors: Whispering Gallery Resonators in Wicking Microfluidics.
    Riesen N; Peterkovic ZQ; Guan B; François A; Lancaster DG; Priest C
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684755
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In-plane subwavelength optical capsule for lab-on-a-chip nano-tweezers.
    Minin OV; Chen WY; Chien SC; Cheng CH; Minin IV; Liu CY
    Opt Lett; 2022 Feb; 47(4):794-797. PubMed ID: 35167527
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gold nanorod assisted intracellular optical manipulation of silica microspheres.
    Haro-González P; Rodríguez Sevilla P; Sanz-Rodríguez F; Martín Rodríguez E; Bogdan N; Capobianco JA; Dholakia K; Jaque D
    Opt Express; 2014 Aug; 22(16):19735-47. PubMed ID: 25321056
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impedance spectroscopy and optical analysis of single biological cells and organisms in microsystems.
    Gawad S; Holmes D; Benazzi G; Renaud P; Morgan H
    Methods Mol Biol; 2010; 583():149-82. PubMed ID: 19763464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.