These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20479845)

  • 1. Preparing large-aspect-ratio prolate metal nanoparticles in glass by simultaneous femtosecond multicolor irradiation.
    Stalmashonak A; Matyssek C; Kiriyenko O; Hergert W; Graener H; Seifert G
    Opt Lett; 2010 May; 35(10):1671-3. PubMed ID: 20479845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles.
    Tyrk MA; Gillespie WA; Seifert G; Abdolvand A
    Opt Express; 2013 Sep; 21(19):21823-8. PubMed ID: 24104074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and fragmentation of silver nanoparticles in their synthesis with a fs laser and CW light by photo-sensitization with benzophenone.
    Eustis S; Krylova G; Eremenko A; Smirnova N; Schill AW; El-Sayed M
    Photochem Photobiol Sci; 2005 Jan; 4(1):154-9. PubMed ID: 15616707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement.
    Sztainbuch IW
    J Chem Phys; 2006 Sep; 125(12):124707. PubMed ID: 17014200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 Mar; 109(8):3104-11. PubMed ID: 16851329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic structure dependence of the collective excitation in metal nanoparticles.
    Negre CF; Sánchez CG
    J Chem Phys; 2008 Jul; 129(3):034710. PubMed ID: 18647041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced frequency upconversion of Sm3+ ions by elliptical Au nanoparticles in dichroic Sm3+: Au-antimony glass nanocomposites.
    Som T; Karmakar B
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Feb; 75(2):640-6. PubMed ID: 20005770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser.
    Chervinskii S; Drevinskas R; Karpov DV; Beresna M; Lipovskii AA; Svirko YP; Kazansky PG
    Sci Rep; 2015 Sep; 5():13746. PubMed ID: 26348691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of plasmonic heating by gold nanospheres and nanoshells.
    Harris N; Ford MJ; Cortie MB
    J Phys Chem B; 2006 Jun; 110(22):10701-7. PubMed ID: 16771316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques: a plasmon and cluster time-resolved spectroscopic study.
    Rodríguez-Sánchez ML; Rodríguez MJ; Blanco MC; Rivas J; López-Quintela MA
    J Phys Chem B; 2005 Jan; 109(3):1183-91. PubMed ID: 16851079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance.
    Huang W; Qian W; El-Sayed MA
    J Am Chem Soc; 2006 Oct; 128(41):13330-1. PubMed ID: 17031925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses.
    Baraldi G; Gonzalo J; Solis J; Siegel J
    Nanotechnology; 2013 Jun; 24(25):255301. PubMed ID: 23708266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution.
    Peng Z; Spliethoff B; Tesche B; Walther T; Kleinermanns K
    J Phys Chem B; 2006 Feb; 110(6):2549-54. PubMed ID: 16471854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):374-81. PubMed ID: 19324587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproductive death of cancer cells induced by femtosecond laser pulses.
    Thøgersen J; Knudsen CS; Maetzke A; Jensen SJ; Keiding SR; Alsner J; Overgaard J
    Int J Radiat Biol; 2007 May; 83(5):289-99. PubMed ID: 17457754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass.
    Tyrk MA; Zolotovskaya SA; Gillespie WA; Abdolvand A
    Opt Express; 2015 Sep; 23(18):23394-400. PubMed ID: 26368440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2005 Nov; 109(43):20331-8. PubMed ID: 16853630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.