BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 20479959)

  • 1. Impact of marine drugs on cytoskeleton-mediated reproductive events.
    Silvestre F; Tosti E
    Mar Drugs; 2010 Mar; 8(4):881-915. PubMed ID: 20479959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of marine drugs on animal reproductive processes.
    Silvestre F; Tosti E
    Mar Drugs; 2009 Nov; 7(4):539-64. PubMed ID: 20098597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization.
    Coticchio G; Dal Canto M; Mignini Renzini M; Guglielmo MC; Brambillasca F; Turchi D; Novara PV; Fadini R
    Hum Reprod Update; 2015; 21(4):427-54. PubMed ID: 25744083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules and microfilaments in cell morphogenesis in higher plants.
    Mathur J; Hülskamp M
    Curr Biol; 2002 Oct; 12(19):R669-76. PubMed ID: 12361589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro.
    Sun QY; Lai L; Park KW; Kühholzer B; Prather RS; Schatten H
    Biol Reprod; 2001 Mar; 64(3):879-89. PubMed ID: 11207204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin deprivation induces a developmental switch in maize somatic embryogenesis involving redistribution of microtubules and actin filaments from endoplasmic to cortical cytoskeletal arrays.
    Samaj J; Baluska F; Pretová A; Volkmann D
    Plant Cell Rep; 2003 Jun; 21(10):940-5. PubMed ID: 12835902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells.
    Spector I; Shochet NR; Kashman Y; Groweiss A
    Science; 1983 Feb; 219(4584):493-5. PubMed ID: 6681676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxins affecting actin filaments and microtubules.
    Saito SY
    Prog Mol Subcell Biol; 2009; 46():187-219. PubMed ID: 19184589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development.
    Caldwell GS
    Mar Drugs; 2009 Aug; 7(3):367-400. PubMed ID: 19841721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model.
    Lian HY; Jiao GZ; Wang HL; Tan XW; Wang TY; Zheng LL; Kong QQ; Tan JH
    Biol Reprod; 2014 Sep; 91(3):56. PubMed ID: 25061094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the meiotic inhibitor cilostamide on resumption of meiosis and cytoskeletal distribution in buffalo oocytes.
    Li QY; Lou J; Yang XG; Lu YQ; Lu SS; Lu KH
    Anim Reprod Sci; 2016 Nov; 174():37-44. PubMed ID: 27616355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution and requirements of microtubules and microfilaments during fertilization and parthenogenesis in pig oocytes.
    Kim NH; Chung KS; Day BN
    J Reprod Fertil; 1997 Sep; 111(1):143-9. PubMed ID: 9370978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products.
    Risinger AL; Du L
    Nat Prod Rep; 2020 May; 37(5):634-652. PubMed ID: 31764930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifications of microfilaments and microtubules induced by two hepatic tumor promoters, phenobarbital and biliverdin in non-transformed and transformed hepatic cell lines.
    Decloitre F; Lafarge-Frayssinet C; Martin M; Frayssinet C
    Cell Biol Toxicol; 1990 Jan; 6(1):23-34. PubMed ID: 1970750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrolides: From Toxins to Therapeutics.
    Lenz KD; Klosterman KE; Mukundan H; Kubicek-Sutherland JZ
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34065929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal dynamics during mammalian gametegenesis and fertilization: Implications for human reproduction.
    Terada Y; Morito Y; Tachibana M; Morita J; Nakamura SI; Murakami T; Yaegashi N; Okamura K
    Reprod Med Biol; 2005 Sep; 4(3):179-187. PubMed ID: 29699221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial protein toxins acting on the cell cytoskeleton.
    Donelli G; Fiorentini C
    New Microbiol; 1994 Oct; 17(4):345-62. PubMed ID: 7861993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoskeletal interference - A new mode of action for the anticancer drugs camptothecin and topotecan.
    Wang X; Tanaka M; Krstin S; Peixoto HS; Moura CCM; Wink M
    Eur J Pharmacol; 2016 Oct; 789():265-274. PubMed ID: 27474470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between cytoskeletal proteins and the toxic effects of drugs.
    Tsuyama S; Takenaka S
    J Toxicol Sci; 1997 Dec; 22(5):383-95. PubMed ID: 9442448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.