These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20479994)

  • 1. Light dose is a limiting factor to maintain cell viability in fluorescence microscopy and single molecule detection.
    Wagner M; Weber P; Bruns T; Strauss WSL; Wittig R; Schneckenburger H
    Int J Mol Sci; 2010 Mar; 11(3):956-966. PubMed ID: 20479994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light exposure and cell viability in fluorescence microscopy.
    Schneckenburger H; Weber P; Wagner M; Schickinger S; Richter V; Bruns T; Strauss WS; Wittig R
    J Microsc; 2012 Mar; 245(3):311-8. PubMed ID: 22126439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotopology of cell adhesion upon Variable-Angle Total Internal Reflection Fluorescence Microscopy (VA-TIRFM).
    Wagner M; Weber P; Baumann H; Schneckenburger H
    J Vis Exp; 2012 Oct; (68):e4133. PubMed ID: 23052337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced cell damage in live-cell super-resolution microscopy.
    Wäldchen S; Lehmann J; Klein T; van de Linde S; Sauer M
    Sci Rep; 2015 Oct; 5():15348. PubMed ID: 26481189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total internal reflection fluorescence microscopy for high-resolution imaging of cell-surface events.
    Jaiswal JK; Simon SM
    Curr Protoc Cell Biol; 2003 Nov; Chapter 4():Unit 4.12. PubMed ID: 18228434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining TIR and FRET in Molecular Test Systems.
    Schneckenburger H; Weber P; Wagner M; Enderle S; Kalthof B; Schneider L; Herzog C; Weghuber J; Lanzerstorfer P
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Even illumination in total internal reflection fluorescence microscopy using laser light.
    Fiolka R; Belyaev Y; Ewers H; Stemmer A
    Microsc Res Tech; 2008 Jan; 71(1):45-50. PubMed ID: 17886344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective examination of plasma membrane-associated photosensitizers using total internal reflection fluorescence spectroscopy: correlation between photobleaching and photodynamic efficacy of protoporphyrin IX.
    Strauss WS; Sailer R; Gschwend MH; Emmert H; Steiner R; Schneckenburger H
    Photochem Photobiol; 1998 Mar; 67(3):363-9. PubMed ID: 9523537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective-type total internal reflection microscopy (excitation) for single-molecule FRET.
    Joo C; Ha T
    Cold Spring Harb Protoc; 2012 Nov; 2012(11):1189-91. PubMed ID: 23118358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-dimensional fluorescence microscopy of living cells.
    Schneckenburger H; Wagner M; Weber P; Bruns T; Richter V; Strauss WS; Wittig R
    J Biophotonics; 2011 Mar; 4(3):143-9. PubMed ID: 21287686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy.
    Deschamps J; Rowald A; Ries J
    Opt Express; 2016 Nov; 24(24):28080-28090. PubMed ID: 27906373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-Resolution Live Cell Microscopy of Membrane-Proximal Fluorophores.
    Richter V; Lanzerstorfer P; Weghuber J; Schneckenburger H
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32993061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.
    Hoebe RA; Van Oven CH; Gadella TW; Dhonukshe PB; Van Noorden CJ; Manders EM
    Nat Biotechnol; 2007 Feb; 25(2):249-53. PubMed ID: 17237770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon laser scanning fluorescence microscopy.
    Denk W; Strickler JH; Webb WW
    Science; 1990 Apr; 248(4951):73-6. PubMed ID: 2321027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device.
    Stock K; Sailer R; Strauss WS; Lyttek M; Steiner R; Schneckenburger H
    J Microsc; 2003 Jul; 211(Pt 1):19-29. PubMed ID: 12839547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Guide to Structured Illumination TIRF Microscopy at High Speed with Multiple Colors.
    Young LJ; Ströhl F; Kaminski CF
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneously Blinking Fluorescent Protein for Simple Single Laser Super-Resolution Live Cell Imaging.
    Arai Y; Takauchi H; Ogami Y; Fujiwara S; Nakano M; Matsuda T; Nagai T
    ACS Chem Biol; 2018 Aug; 13(8):1938-1943. PubMed ID: 29963852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells.
    Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM
    J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advancements in structured-illumination microscopy toward live-cell imaging.
    Hirano Y; Matsuda A; Hiraoka Y
    Microscopy (Oxf); 2015 Aug; 64(4):237-49. PubMed ID: 26133185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.