These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20480379)

  • 21. HIV-1 Mutant Assembly, Processing and Infectivity Expresses Pol Independent of Gag.
    Yu FH; Huang KJ; Wang CT
    Viruses; 2020 Jan; 12(1):. PubMed ID: 31906562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate recognition in HIV-1 protease: a computational study.
    Perez MA; Fernandes PA; Ramos MJ
    J Phys Chem B; 2010 Feb; 114(7):2525-32. PubMed ID: 20121080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain.
    Sei S; Yang QE; O'Neill D; Yoshimura K; Nagashima K; Mitsuya H
    J Virol; 2000 May; 74(10):4621-33. PubMed ID: 10775598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of inhibition of the retroviral protease by a Rous sarcoma virus peptide substrate representing the cleavage site between the gag p2 and p10 proteins.
    Cameron CE; Grinde B; Jentoft J; Leis J; Weber IT; Copeland TD; Wlodawer A
    J Biol Chem; 1992 Nov; 267(33):23735-41. PubMed ID: 1331099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blocking of human immunodeficiency virus type-1 virion autolysis by autologous p2(gag) peptide.
    Misumi S; Morikawa Y; Tomonaga M; Ohkuma K; Takamune N; Shoji S
    J Biochem; 2004 Mar; 135(3):447-53. PubMed ID: 15113844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of the Gag-Pol transframe domain p6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1.
    Paulus C; Ludwig C; Wagner R
    Virology; 2004 Dec; 330(1):271-83. PubMed ID: 15527852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease.
    Tang C; Louis JM; Aniana A; Suh JY; Clore GM
    Nature; 2008 Oct; 455(7213):693-6. PubMed ID: 18833280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of protease cleavage sites within and flanking human immunodeficiency virus type 1 transframe protein p6* for spatiotemporal regulation of protease activation.
    Ludwig C; Leiherer A; Wagner R
    J Virol; 2008 May; 82(9):4573-84. PubMed ID: 18321978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antiviral agent based on the non-structural protein targeting the maturation process of HIV-1: expression and susceptibility of chimeric Vpr as a substrate for cleavage by HIV-1 protease.
    Serio D; Singh SP; Cartas MA; Weber IT; Harrison RW; Louis JM; Srinivasan A
    Protein Eng; 2000 Jun; 13(6):431-6. PubMed ID: 10877854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer.
    Hu K; Clément JF; Abrahamyan L; Strebel K; Bouvier M; Kleiman L; Mouland AJ
    J Virol Methods; 2005 Sep; 128(1-2):93-103. PubMed ID: 15951029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors.
    Bally F; Martinez R; Peters S; Sudre P; Telenti A
    AIDS Res Hum Retroviruses; 2000 Sep; 16(13):1209-13. PubMed ID: 10957718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro.
    Maguire MF; Guinea R; Griffin P; Macmanus S; Elston RC; Wolfram J; Richards N; Hanlon MH; Porter DJ; Wrin T; Parkin N; Tisdale M; Furfine E; Petropoulos C; Snowden BW; Kleim JP
    J Virol; 2002 Aug; 76(15):7398-406. PubMed ID: 12097552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human immunodeficiency virus type 1 protease-correlated cleavage site mutations enhance inhibitor resistance.
    Kolli M; Stawiski E; Chappey C; Schiffer CA
    J Virol; 2009 Nov; 83(21):11027-42. PubMed ID: 19706699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites.
    Potempa M; Lee SK; Kurt Yilmaz N; Nalivaika EA; Rogers A; Spielvogel E; Carter CW; Schiffer CA; Swanstrom R
    J Mol Biol; 2018 Dec; 430(24):5182-5195. PubMed ID: 30414407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A strongly transdominant mutation in the human immunodeficiency virus type 1 gag gene defines an Achilles heel in the virus life cycle.
    Lee SK; Harris J; Swanstrom R
    J Virol; 2009 Sep; 83(17):8536-43. PubMed ID: 19515760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gag-Pol Transframe Domain p6* Is Essential for HIV-1 Protease-Mediated Virus Maturation.
    Yu FH; Chou TA; Liao WH; Huang KJ; Wang CT
    PLoS One; 2015; 10(6):e0127974. PubMed ID: 26030443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites.
    J Virol; ; . PubMed ID: 9261388
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.