These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 20480500)
1. Giant nanotubes loaded with artificial peroxidase centers: self-assembly of supramolecular amphiphiles as a tool to functionalize nanotubes. Tang Y; Zhou L; Li J; Luo Q; Huang X; Wu P; Wang Y; Xu J; Shen J; Liu J Angew Chem Int Ed Engl; 2010 May; 49(23):3920-4. PubMed ID: 20480500 [No Abstract] [Full Text] [Related]
2. Temperature-driven switching of the catalytic activity of artificial glutathione peroxidase by the shape transition between the nanotubes and vesicle-like structures. Wang L; Zou H; Dong Z; Zhou L; Li J; Luo Q; Zhu J; Xu J; Liu J Langmuir; 2014 Apr; 30(14):4013-8. PubMed ID: 24654792 [TBL] [Abstract][Full Text] [Related]
3. Construction of a artificial glutathione peroxidase with temperature-dependent activity based on a supramolecular graft copolymer. Yin Y; Jiao S; Wang Y; Zhang R; Shi Z; Hu X Chembiochem; 2015 Mar; 16(4):670-6. PubMed ID: 25683962 [TBL] [Abstract][Full Text] [Related]
4. Design of artificial selenoenzymes based on macromolecular scaffolds. Huang X; Yin Y; Liu J Macromol Biosci; 2010 Dec; 10(12):1385-96. PubMed ID: 20632366 [TBL] [Abstract][Full Text] [Related]
5. The construction of functional protein nanotubes by small molecule-induced self-assembly of cricoid proteins. Miao L; Fan Q; Zhao L; Qiao Q; Zhang X; Hou C; Xu J; Luo Q; Liu J Chem Commun (Camb); 2016 Mar; 52(21):4092-5. PubMed ID: 26899168 [TBL] [Abstract][Full Text] [Related]
6. Artificial selenoenzymes: designed and redesigned. Huang X; Liu X; Luo Q; Liu J; Shen J Chem Soc Rev; 2011 Mar; 40(3):1171-84. PubMed ID: 21125082 [TBL] [Abstract][Full Text] [Related]
7. Cyclodextrin-based self-assembled nanotubes at the water/air interface. Hernández-Pascacio J; Garza C; Banquy X; Díaz-Vergara N; Amigo A; Ramos S; Castillo R; Costas M; Piñeiro A J Phys Chem B; 2007 Nov; 111(44):12625-30. PubMed ID: 17941668 [TBL] [Abstract][Full Text] [Related]
8. Construction of a smart temperature-responsive GPx mimic based on the self-assembly of supra-amphiphiles. Zou H; Sun H; Wang L; Zhao L; Li J; Dong Z; Luo Q; Xu J; Liu J Soft Matter; 2016 Jan; 12(4):1192-9. PubMed ID: 26616916 [TBL] [Abstract][Full Text] [Related]
9. Construction of giant branched nanotubes from cyclodextrin-based supramolecular amphiphiles. Fan X; Wang L; Luo Q; Zhao L; Xu J; Liu J; Zheng Q Chem Commun (Camb); 2015 Apr; 51(30):6512-4. PubMed ID: 25778673 [TBL] [Abstract][Full Text] [Related]
10. Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules. Chen Y; Shen Z; Frey H; Pérez-Prieto J; Stiriba SE Chem Commun (Camb); 2005 Feb; (6):755-7. PubMed ID: 15685327 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of glutathione peroxidase active site into polymer based on imprinting strategy. Huang X; Yin Y; Liu Y; Bai X; Zhang Z; Xu J; Shen J; Liu J Biosens Bioelectron; 2009 Nov; 25(3):657-60. PubMed ID: 19250815 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes. Johnson RS; Yamazaki T; Kovalenko A; Fenniri H J Am Chem Soc; 2007 May; 129(17):5735-43. PubMed ID: 17417852 [TBL] [Abstract][Full Text] [Related]
13. Structural water drives self-assembly of organic rosette nanotubes and holds host atoms in the channel. Yamazaki T; Fenniri H; Kovalenko A Chemphyschem; 2010 Feb; 11(2):361-7. PubMed ID: 20017180 [TBL] [Abstract][Full Text] [Related]
14. Fluorescent dendron-cyclodextrin nanotubes with surface peptide spacer as a recyclable sensory platform. Lee J; Park S; Lohani CR; Lee KH; Kim C Chemistry; 2012 Jun; 18(24):7351-6. PubMed ID: 22573408 [TBL] [Abstract][Full Text] [Related]
15. Controllable peptide-dendron self-assembly: interconversion of nanotubes and fibrillar nanostructures. Shao H; Parquette JR Angew Chem Int Ed Engl; 2009; 48(14):2525-8. PubMed ID: 19248060 [TBL] [Abstract][Full Text] [Related]
16. Construction of smart glutathione peroxidase mimic based on hydrophilic block copolymer with temperature responsive activity. Huang X; Yin Y; Jiang X; Tang Y; Xu J; Liu J; Shen J Macromol Biosci; 2009 Dec; 9(12):1202-10. PubMed ID: 19899072 [TBL] [Abstract][Full Text] [Related]
17. Tunable fluorescent dendron-cyclodextrin nanotubes for hybridization with metal nanoparticles and their biosensory function. Park C; Im MS; Lee S; Lim J; Kim C Angew Chem Int Ed Engl; 2008; 47(51):9922-6. PubMed ID: 19003841 [No Abstract] [Full Text] [Related]
18. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Richard C; Balavoine F; Schultz P; Ebbesen TW; Mioskowski C Science; 2003 May; 300(5620):775-8. PubMed ID: 12730595 [TBL] [Abstract][Full Text] [Related]
19. Construction of a novel guest biomimetic glutathione peroxidase with solvent-dependent catalytic behavior by incorporating the active center into adamantyl molecule. Yin Y; Lang C; Hua X; Shia Z; Wang Y; Jiao S; Cai C; Liu J Bioorg Khim; 2014; 40(2):178-85. PubMed ID: 25895337 [TBL] [Abstract][Full Text] [Related]
20. [Studies on the formation of cyclodextrin nanotube by fluorescence and anisotropy measurements]. Zhang CF; Shen XH; Gao HC Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):217-20. PubMed ID: 12961852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]