These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20480760)

  • 1. Full-scale removal of arsenate and chromate from water using a limestone and ochreous sludge mixture as a low-cost sorbent material.
    Cederkvist K; Holm PE; Jensen MB
    Water Environ Res; 2010 May; 82(5):401-8. PubMed ID: 20480760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino-functionalized MCM-41 and MCM-48 for the removal of chromate and arsenate.
    Benhamou A; Basly JP; Baudu M; Derriche Z; Hamacha R
    J Colloid Interface Sci; 2013 Aug; 404():135-9. PubMed ID: 23684231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive adsorption and desorption of arsenate, vanadate, and molybdate onto the low-cost adsorbent materials alum water treatment sludge and bauxite.
    Hua T; Haynes RJ; Zhou YF
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34053-34062. PubMed ID: 30280345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and performance of arsenate (V) adsorbents derived from concrete wastes.
    Sasaki T; Iizuka A; Watanabe M; Hongo T; Yamasaki A
    Waste Manag; 2014 Oct; 34(10):1829-35. PubMed ID: 24472713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of chromium and arsenate from contaminated groundwater by ferrous sulfate: batch uptake behavior.
    Guan X; Dong H; Ma J; Lo IM
    J Environ Sci (China); 2011; 23(3):372-80. PubMed ID: 21520805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of inorganic oxyanions by organo-kaolinite.
    Li Z; Bowman RS
    Water Res; 2001 Nov; 35(16):3771-6. PubMed ID: 12230158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.
    Saikia J; Saha B; Das G
    J Hazard Mater; 2011 Feb; 186(1):575-82. PubMed ID: 21144648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromate removal by an iron sorbent: mechanism and modeling.
    Smith E; Ghiassi K
    Water Environ Res; 2006 Jan; 78(1):84-93. PubMed ID: 16553170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining material characterization with single and multi-oxyanion adsorption for mechanistic study of chromate removal by cationic hydrogel.
    Lo IM; Yin K; Tang SC
    J Environ Sci (China); 2011; 23(6):1004-10. PubMed ID: 22066224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast removal of high quantities of toxic arsenate via cationic p(APTMACl) microgels.
    Rehman SU; Siddiq M; Al-Lohedan H; Aktas N; Sahiner M; Demirci S; Sahiner N
    J Environ Manage; 2016 Jan; 166():217-26. PubMed ID: 26513320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions.
    Guo Y; Zhu Z; Qiu Y; Zhao J
    J Environ Sci (China); 2013 May; 25(5):944-53. PubMed ID: 24218824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upcycling of groundwater treatment sludge to magnetic Fe/Mn-bearing nanorod for chromate adsorption from wastewater treatment.
    Qu Z; Dong W; Chen Y; Dong G; Zhu S; Yu Y; Bian D
    PLoS One; 2020; 15(6):e0234136. PubMed ID: 32520947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition in chromate adsorption onto micro-sized granular ferric hydroxide.
    Hilbrandt I; Ruhl AS; Zietzschmann F; Molkenthin M; Jekel M
    Chemosphere; 2019 Mar; 218():749-757. PubMed ID: 30504050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective, Low-Cost Recovery of Toxic Arsenate Anions from Water by Using Hollow-Sphere Geode Traps.
    Shenashen MA; Akhtar N; Selim MM; Morsy WM; Yamaguchi H; Kawada S; Alhamid AA; Ohashi N; Ichinose I; Alamoudi AS; El-Safty SA
    Chem Asian J; 2017 Aug; 12(15):1952-1964. PubMed ID: 28544414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.
    Tolonen ET; Hu T; Rämö J; Lassi U
    J Environ Manage; 2016 Oct; 181():856-862. PubMed ID: 27397845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cost-effective system for in-situ geological arsenic adsorption from groundwater.
    Shan H; Ma T; Wang Y; Zhao J; Han H; Deng Y; He X; Dong Y
    J Contam Hydrol; 2013 Nov; 154():1-9. PubMed ID: 24035830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid.
    Mak MS; Rao P; Lo IM
    Environ Pollut; 2011 Feb; 159(2):377-82. PubMed ID: 21130550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of anionic pollutants by pine bark is influenced by the mechanism of retention.
    Paradelo R; Conde-Cid M; Arias-Estévez M; Nóvoa-Muñoz JC; Álvarez-Rodríguez E; Fernández-Sanjurjo MJ; Núñez-Delgado A
    Chemosphere; 2017 Jan; 167():139-145. PubMed ID: 27716586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.