These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20480992)

  • 61. Stability of coliphage lambda DNA replication initiator, the lambda O protein.
    Wegrzyn G; Pawlowicz A; Taylor K
    J Mol Biol; 1992 Aug; 226(3):675-80. PubMed ID: 1387170
    [TBL] [Abstract][Full Text] [Related]  

  • 62. HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase.
    Mendelson I; Gottesman M; Oppenheim AB
    J Bacteriol; 1991 Mar; 173(5):1670-6. PubMed ID: 1825651
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interaction of bacteriophage lambda with its cell surface receptor: an in vitro study of binding of the viral tail protein gpJ to LamB (Maltoporin).
    Berkane E; Orlik F; Stegmeier JF; Charbit A; Winterhalter M; Benz R
    Biochemistry; 2006 Feb; 45(8):2708-20. PubMed ID: 16489764
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Trypsin inhibitors. IV. 2 specific trypsin inhibitors from porcine pancreas].
    Tschesche H; Wachter E; Kupfer S; Niedermeier K
    Hoppe Seylers Z Physiol Chem; 1969 Oct; 350(10):1247-56. PubMed ID: 5352358
    [No Abstract]   [Full Text] [Related]  

  • 65. Synthesis of human interferon beta 1 in Escherichia coli infected by a lambda phage recombinant containing a human genomic fragment.
    Mory Y; Chernajovsky Y; Feinstein SI; Chen L; Nir U; Weissenbach J; Malpiece Y; Tiollais P; Marks D; Ladner M; Colby C; Revel M
    Eur J Biochem; 1981 Nov; 120(1):197-202. PubMed ID: 6171427
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure.
    Heine HG; Francis G; Lee KS; Ferenci T
    J Bacteriol; 1988 Apr; 170(4):1730-8. PubMed ID: 2832377
    [TBL] [Abstract][Full Text] [Related]  

  • 67. E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide.
    Craig NL; Roberts JW
    Nature; 1980 Jan; 283(5742):26-30. PubMed ID: 6444245
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The activity of the CIII regulator of lambdoid bacteriophages resides within a 24-amino acid protein domain.
    Kornitzer D; Altuvia S; Oppenheim AB
    Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5217-21. PubMed ID: 1828895
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Uniformity and species-specific features of the N-terminal amino-acid sequence of porcine immunoglobulin lambda-chains.
    Novotný J; Dolejs L; Franĕk F
    Eur J Biochem; 1972 Dec; 31(2):277-89. PubMed ID: 4675035
    [No Abstract]   [Full Text] [Related]  

  • 70. A Thermophilic Phage Endolysin Fusion to a Clostridium perfringens-Specific Cell Wall Binding Domain Creates an Anti-Clostridium Antimicrobial with Improved Thermostability.
    Swift SM; Seal BS; Garrish JK; Oakley BB; Hiett K; Yeh HY; Woolsey R; Schegg KM; Line JE; Donovan DM
    Viruses; 2015 Jun; 7(6):3019-34. PubMed ID: 26075507
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Size restriction on peptide utilization in Escherichia coli.
    Payne JW; Gilvarg C
    J Biol Chem; 1968 Dec; 243(23):6291-9. PubMed ID: 4881360
    [No Abstract]   [Full Text] [Related]  

  • 72. Relation of endolysin to lysis by lambda bacteriophages.
    GROMAN NB; SUZUKI G
    J Bacteriol; 1962 Sep; 84(3):596-7. PubMed ID: 13950660
    [No Abstract]   [Full Text] [Related]  

  • 73. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA.
    Wu R; Taylor E
    J Mol Biol; 1971 May; 57(3):491-511. PubMed ID: 4931680
    [No Abstract]   [Full Text] [Related]  

  • 74. The R gene product of bacteriophage lambda is the murein transglycosylase.
    Bienkowska-Szewczyk K; Lipinska B; Taylor A
    Mol Gen Genet; 1981; 184(1):111-4. PubMed ID: 6460914
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Efficiency of phage protein synthesis in lambda-infected E. coli minicells.
    Lipińska B; Podhajska A; Taylor K
    Acta Biochim Pol; 1980; 27(3-4):273-80. PubMed ID: 6455894
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Endolysin of bacteriophage BFK20: evidence of a catalytic and a cell wall binding domain.
    Gerova M; Halgasova N; Ugorcakova J; Bukovska G
    FEMS Microbiol Lett; 2011 Aug; 321(2):83-91. PubMed ID: 21592196
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of C-terminal residues in oligomerization and stability of lambda CII: implications for lysis-lysogeny decision of the phage.
    Datta AB; Roy S; Parrack P
    J Mol Biol; 2005 Jan; 345(2):315-24. PubMed ID: 15571724
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis of the bacteriophage lambda P protein in amino acid-starved Escherichia coli cells.
    Obuchowski M; Wegrzyn G
    Biochem Biophys Res Commun; 1996 May; 222(2):612-8. PubMed ID: 8670253
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Amino-acid sequence of lambda phage endolysin.
    Imada M; Tsugita A
    Nat New Biol; 1971 Oct; 233(42):230-1. PubMed ID: 20480992
    [No Abstract]   [Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.