These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20481333)

  • 1. [Optimization of a helical flow inducer of endovascular stent based on the principle of swirling flow in arterial system].
    Teng X; Deng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Apr; 27(2):429-34. PubMed ID: 20481333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swirling flow can suppress flow disturbances in endovascular stents: a numerical study.
    Chen Z; Fan Y; Deng X; Xu Z
    ASAIO J; 2009; 55(6):543-9. PubMed ID: 19779303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Finite element method and computational fluid dynamics used in the analysis of a stent].
    Liang D; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):549-53. PubMed ID: 17713259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Survey of coronary stents development for restenosis prevention].
    Chen J; Ni Z; Gu X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Nov; 33(6):429-34. PubMed ID: 20352916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing pulsatile flow in a deployed coronary stent.
    Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA
    J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of fluid mechanical disturbance induced by endovascular stents.
    Seo T; Schachter LG; Barakat AI
    Ann Biomed Eng; 2005 Apr; 33(4):444-56. PubMed ID: 15909650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The role of haemodynamic factors in the development of in-stent restenosis].
    Wasilewski J; Osadnik T; Peryt Stawiarska S; PoloĊ„ski L
    Kardiol Pol; 2012; 70(11):1194-8. PubMed ID: 23180536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hemodynamically optimal coronary stent designs based on vessel caliber.
    Gundert TJ; Marsden AL; Yang W; Marks DS; LaDisa JF
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1992-2002. PubMed ID: 22547450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational approach to estimating the effects of blood properties on changes in intra-stent flow.
    Benard N; Perrault R; Coisne D
    Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The adverse effects of flow-diverter stent-like devices on the flow pattern of saccular intracranial aneurysm models: computational fluid dynamics study.
    Hassan T; Ahmed YM; Hassan AA
    Acta Neurochir (Wien); 2011 Aug; 153(8):1633-40. PubMed ID: 21647821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening.
    LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swirling flow can suppress monocyte adhesion in the flow disturbance zones of the endovascular stent.
    Chen Z; Zhang X; Deng X
    Biorheology; 2012; 49(5-6):341-52. PubMed ID: 23380900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hemodynamics analysis of intravascular stents with different design features].
    Liang D; Yang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1241-4. PubMed ID: 17228717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress.
    Benard N; Coisne D; Donal E; Perrault R
    J Biomech; 2003 Jul; 36(7):991-8. PubMed ID: 12757808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry.
    Capelli C; Gervaso F; Petrini L; Dubini G; Migliavacca F
    Med Eng Phys; 2009 May; 31(4):441-7. PubMed ID: 19109049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.
    Martin DM; Murphy EA; Boyle FJ
    Med Eng Phys; 2014 Aug; 36(8):1047-56. PubMed ID: 24953569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stent design parameters on normal artery wall mechanics.
    Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE
    J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions.
    He Y; Duraiswamy N; Frank AO; Moore JE
    J Biomech Eng; 2005 Aug; 127(4):637-47. PubMed ID: 16121534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.