BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20481463)

  • 41. Slow proton transfer from the hydrogen-labelled carboxylic acid side chain (Glu-165) of triosephosphate isomerase to imidazole buffer in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Org Biomol Chem; 2008 Jan; 6(2):391-6. PubMed ID: 18175010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational modeling of the catalytic reaction in triosephosphate isomerase.
    Guallar V; Jacobson M; McDermott A; Friesner RA
    J Mol Biol; 2004 Mar; 337(1):227-39. PubMed ID: 15001364
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Liberation of the triosephosphate isomerase reaction intermediate and its trapping by isomerase, yeast aldolase, and methylglyoxal synthase.
    Iyengar R; Rose IA
    Biochemistry; 1981 Mar; 20(5):1229-35. PubMed ID: 7013791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural determinants for ligand binding and catalysis of triosephosphate isomerase.
    Kursula I; Partanen S; Lambeir AM; Antonov DM; Augustyns K; Wierenga RK
    Eur J Biochem; 2001 Oct; 268(19):5189-96. PubMed ID: 11589711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Substrate product equilibrium on a reversible enzyme, triosephosphate isomerase.
    Rozovsky S; McDermott AE
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2080-5. PubMed ID: 17287353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of the K12M/G15A triosephosphate isomerase double mutant and electrostatic analysis of the active site.
    Joseph-McCarthy D; Lolis E; Komives EA; Petsko GA
    Biochemistry; 1994 Mar; 33(10):2815-23. PubMed ID: 8130194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Segmental motion in catalysis: investigation of a hydrogen bond critical for loop closure in the reaction of triosephosphate isomerase.
    Sampson NS; Knowles JR
    Biochemistry; 1992 Sep; 31(36):8488-94. PubMed ID: 1390633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzyme Architecture: Amino Acid Side-Chains That Function To Optimize the Basicity of the Active Site Glutamate of Triosephosphate Isomerase.
    Zhai X; Reinhardt CJ; Malabanan MM; Amyes TL; Richard JP
    J Am Chem Soc; 2018 Jul; 140(26):8277-8286. PubMed ID: 29862813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Segmental movement: definition of the structural requirements for loop closure in catalysis by triosephosphate isomerase.
    Sampson NS; Knowles JR
    Biochemistry; 1992 Sep; 31(36):8482-7. PubMed ID: 1390632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Role of Asn11 in Catalysis by Triosephosphate Isomerase.
    Hegazy R; Cordara G; Wierenga RK; Richard JP
    Biochemistry; 2023 Jun; 62(11):1794-1806. PubMed ID: 37162263
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli.
    Nickbarg EB; Knowles JR
    Biochemistry; 1988 Aug; 27(16):5939-47. PubMed ID: 3056516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ab initio models for receptor-ligand interactions in proteins. 4. Model assembly study of the catalytic mechanism of triosephosphate isomerase.
    Peräkylä M; Pakkanen TA
    Proteins; 1996 Jun; 25(2):225-36. PubMed ID: 8811738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simulation analysis of triose phosphate isomerase: conformational transition and catalysis.
    Karplus M; Evanseck JD; Joseph D; Bash PA; Field MJ
    Faraday Discuss; 1992; (93):239-48. PubMed ID: 1290934
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The conserved salt bridge linking two C-terminal beta/alpha units in homodimeric triosephosphate isomerase determines the folding rate of the monomer.
    Reyes-López CA; González-Mondragón E; Benítez-Cardoza CG; Chánez-Cárdenas ME; Cabrera N; Pérez-Montfort R; Hernández-Arana A
    Proteins; 2008 Aug; 72(3):972-9. PubMed ID: 18300228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The structural basis for pseudoreversion of the E165D lesion by the secondary S96P mutation in triosephosphate isomerase depends on the positions of active site water molecules.
    Komives EA; Lougheed JC; Liu K; Sugio S; Zhang Z; Petsko GA; Ringe D
    Biochemistry; 1995 Oct; 34(41):13612-21. PubMed ID: 7577950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neutral imidazole is the electrophile in the reaction catalyzed by triosephosphate isomerase: structural origins and catalytic implications.
    Lodi PJ; Knowles JR
    Biochemistry; 1991 Jul; 30(28):6948-56. PubMed ID: 2069953
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic and structural properties of triosephosphate isomerase from Helicobacter pylori.
    Chu CH; Lai YJ; Huang H; Sun YJ
    Proteins; 2008 Apr; 71(1):396-406. PubMed ID: 17957775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power.
    Williams JC; Zeelen JP; Neubauer G; Vriend G; Backmann J; Michels PA; Lambeir AM; Wierenga RK
    Protein Eng; 1999 Mar; 12(3):243-50. PubMed ID: 10235625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.