These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20481472)

  • 21. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nano-Antennas Based on Silicon-Gold Nanostructures.
    Kucherik A; Kutrovskaya S; Osipov A; Gerke M; Chestnov I; Arakelian S; Shalin AS; Evlyukhin AB; Kavokin AV
    Sci Rep; 2019 Jan; 9(1):338. PubMed ID: 30674963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna.
    Cui Y; He S
    Opt Lett; 2009 Jan; 34(1):16-8. PubMed ID: 19109625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers.
    Wientjes E; Croce R
    Biochem J; 2011 Feb; 433(3):477-85. PubMed ID: 21083539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of ZnO:Tb down-conversion phosphor for Ag nanoparticle plasmon absorption using a He-Cd ultraviolet laser.
    Abbass AE; Swart HC; Kroon RE
    Luminescence; 2016 Sep; 31(6):1182-6. PubMed ID: 26768796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire.
    Hyun JK; Lauhon LJ
    Nano Lett; 2011 Jul; 11(7):2731-4. PubMed ID: 21639402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gaussian decomposition of absorption and linear dichroism spectra of outer antenna complexes of photosystem II.
    Zucchelli G; Dainese P; Jennings RC; Breton J; Garlaschi FM; Bassi R
    Biochemistry; 1994 Aug; 33(30):8982-90. PubMed ID: 8043584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics.
    Jo H; Sohn A; Shin KS; Kumar B; Kim JH; Kim DW; Kim SW
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1030-5. PubMed ID: 24328244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects.
    Govorov AO; Fan Z; Hernandez P; Slocik JM; Naik RR
    Nano Lett; 2010 Apr; 10(4):1374-82. PubMed ID: 20184381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybridized plasmon modes and near-field enhancement of metallic nanoparticle-dimer on a mirror.
    Huang Y; Ma L; Hou M; Li J; Xie Z; Zhang Z
    Sci Rep; 2016 Jul; 6():30011. PubMed ID: 27418039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates.
    Grant CD; Schwartzberg AM; Norman TJ; Zhang JZ
    J Am Chem Soc; 2003 Jan; 125(2):549-53. PubMed ID: 12517170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation.
    Saboktakin M; Ye X; Oh SJ; Hong SH; Fafarman AT; Chettiar UK; Engheta N; Murray CB; Kagan CR
    ACS Nano; 2012 Oct; 6(10):8758-66. PubMed ID: 22967489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasensitive molecular absorption detection using metal slot antenna arrays.
    Ahn KJ; Bahk YM; Kim DS; Kyoung J; Rotermund F
    Opt Express; 2015 Jul; 23(15):19047-55. PubMed ID: 26367567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence enhancement in visible light: dielectric or noble metal?
    Sun S; Wu L; Bai P; Png CE
    Phys Chem Chem Phys; 2016 Jul; 18(28):19324-35. PubMed ID: 27374052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced surface-plasmon resonance absorption in metal-dielectric-metal layered microspheres.
    Hasegawa K; Rohde C; Deutsch M
    Opt Lett; 2006 Apr; 31(8):1136-8. PubMed ID: 16625928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperbolic Meta-Antennas Enable Full Control of Scattering and Absorption of Light.
    Maccaferri N; Zhao Y; Isoniemi T; Iarossi M; Parracino A; Strangi G; De Angelis F
    Nano Lett; 2019 Mar; 19(3):1851-1859. PubMed ID: 30776244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light harvesting in photosystem I supercomplexes.
    Melkozernov AN; Barber J; Blankenship RE
    Biochemistry; 2006 Jan; 45(2):331-45. PubMed ID: 16401064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-Dielectric Antenna Wavelength Router with Bidirectional Scattering of Visible Light.
    Li J; Verellen N; Vercruysse D; Bearda T; Lagae L; Van Dorpe P
    Nano Lett; 2016 Jul; 16(7):4396-403. PubMed ID: 27244478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.