BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 20481474)

  • 1. Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40.
    Wisén S; Bertelsen EB; Thompson AD; Patury S; Ung P; Chang L; Evans CG; Walter GM; Wipf P; Carlson HA; Brodsky JL; Zuiderweg ER; Gestwicki JE
    ACS Chem Biol; 2010 Jun; 5(6):611-22. PubMed ID: 20481474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK.
    Nicoll WS; Botha M; McNamara C; Schlange M; Pesce ER; Boshoff A; Ludewig MH; Zimmermann R; Cheetham ME; Chapple JP; Blatch GL
    Int J Biochem Cell Biol; 2007; 39(4):736-51. PubMed ID: 17239655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state.
    Liu Q; Li H; Yang Y; Tian X; Su J; Zhou L; Liu Q
    Cell Stress Chaperones; 2017 Mar; 22(2):201-212. PubMed ID: 27975204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein.
    Sarbeng EB; Liu Q; Tian X; Yang J; Li H; Wong JL; Zhou L; Liu Q
    J Biol Chem; 2015 Apr; 290(14):8849-62. PubMed ID: 25635056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1.
    Qian X; Hou W; Zhengang L; Sha B
    Biochem J; 2002 Jan; 361(Pt 1):27-34. PubMed ID: 11743879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions.
    Shorter J; Lindquist S
    EMBO J; 2008 Oct; 27(20):2712-24. PubMed ID: 18833196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK.
    Tomoyasu T; Tsuruno K; Tanatsugu R; Miyazaki A; Kondo H; Tabata A; Whiley RA; Sonomoto K; Nagamune H
    Microbiol Immunol; 2018 Nov; 62(11):681-693. PubMed ID: 30239035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction.
    Fiaux J; Horst J; Scior A; Preissler S; Koplin A; Bukau B; Deuerling E
    J Biol Chem; 2010 Jan; 285(5):3227-34. PubMed ID: 19920147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding.
    Tsai J; Douglas MG
    J Biol Chem; 1996 Apr; 271(16):9347-54. PubMed ID: 8621599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains.
    Davis JE; Voisine C; Craig EA
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9269-76. PubMed ID: 10430932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle.
    Cajo GC; Horne BE; Kelley WL; Schwager F; Georgopoulos C; Genevaux P
    J Biol Chem; 2006 May; 281(18):12436-44. PubMed ID: 16533811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles.
    Kumar DP; Vorvis C; Sarbeng EB; Cabra Ledesma VC; Willis JE; Liu Q
    J Mol Biol; 2011 Sep; 411(5):1099-113. PubMed ID: 21762702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p.
    Álamo MM; Sánchez-Gorostiaga A; Serrano AM; Prieto A; Cuéllar J; Martín-Benito J; Valpuesta JM; Giraldo R
    J Mol Biol; 2010 Oct; 403(1):24-39. PubMed ID: 20732327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermolecular Interactions between Hsp90 and Hsp70.
    Doyle SM; Hoskins JR; Kravats AN; Heffner AL; Garikapati S; Wickner S
    J Mol Biol; 2019 Jul; 431(15):2729-2746. PubMed ID: 31125567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP.
    Noguchi A; Ikeda A; Mezaki M; Fukumori Y; Kanemori M
    J Bacteriol; 2014 May; 196(9):1694-703. PubMed ID: 24532774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ.
    Suh WC; Lu CZ; Gross CA
    J Biol Chem; 1999 Oct; 274(43):30534-9. PubMed ID: 10521435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling.
    Genest O; Wickner S; Doyle SM
    J Biol Chem; 2019 Feb; 294(6):2109-2120. PubMed ID: 30401745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperone networks in protein disaggregation and prion propagation.
    Winkler J; Tyedmers J; Bukau B; Mogk A
    J Struct Biol; 2012 Aug; 179(2):152-60. PubMed ID: 22580344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.