These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 20481555)
1. Functional assessment of metal oxide nanoparticle toxicity in immune cells. Maurer-Jones MA; Lin YS; Haynes CL ACS Nano; 2010 Jun; 4(6):3363-73. PubMed ID: 20481555 [TBL] [Abstract][Full Text] [Related]
2. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry. Marquis BJ; Liu Z; Braun KL; Haynes CL Analyst; 2011 Sep; 136(17):3478-86. PubMed ID: 21170444 [TBL] [Abstract][Full Text] [Related]
3. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. Lin YS; Haynes CL J Am Chem Soc; 2010 Apr; 132(13):4834-42. PubMed ID: 20230032 [TBL] [Abstract][Full Text] [Related]
4. Amperometric assessment of functional changes in nanoparticle-exposed immune cells: varying Au nanoparticle exposure time and concentration. Marquis BJ; Maurer-Jones MA; Braun KL; Haynes CL Analyst; 2009 Nov; 134(11):2293-300. PubMed ID: 19838418 [TBL] [Abstract][Full Text] [Related]
5. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. Yu T; Malugin A; Ghandehari H ACS Nano; 2011 Jul; 5(7):5717-28. PubMed ID: 21630682 [TBL] [Abstract][Full Text] [Related]
6. Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Rossi EM; Pylkkänen L; Koivisto AJ; Vippola M; Jensen KA; Miettinen M; Sirola K; Nykäsenoja H; Karisola P; Stjernvall T; Vanhala E; Kiilunen M; Pasanen P; Mäkinen M; Hämeri K; Joutsensaari J; Tuomi T; Jokiniemi J; Wolff H; Savolainen K; Matikainen S; Alenius H Toxicol Sci; 2010 Feb; 113(2):422-33. PubMed ID: 19875681 [TBL] [Abstract][Full Text] [Related]
7. A new synthesis pathway for colloidal silica spheres coated with crystalline titanium oxide and its comparative cyto- and genotoxic study with titanium oxide nanoparticles in rat osteosarcoma (UMR106) cells. Di Virgilio AL; Maisuls I; Kleitz F; Arnal PM J Colloid Interface Sci; 2013 Mar; 394():147-56. PubMed ID: 23261339 [TBL] [Abstract][Full Text] [Related]
8. Dynamic measurement of altered chemical messenger secretion after cellular uptake of nanoparticles using carbon-fiber microelectrode amperometry. Marquis BJ; McFarland AD; Braun KL; Haynes CL Anal Chem; 2008 May; 80(9):3431-7. PubMed ID: 18341358 [TBL] [Abstract][Full Text] [Related]
9. Quantification of F(2)-isoprostane isomers in cultured human lung epithelial cells after silica oxide and metal oxide nanoparticle treatment by liquid chromatography/tandem mass spectrometry. Liu X; Whitefield PD; Ma Y Talanta; 2010 Jun; 81(4-5):1599-606. PubMed ID: 20441945 [TBL] [Abstract][Full Text] [Related]
10. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Wang F; Gao F; Lan M; Yuan H; Huang Y; Liu J Toxicol In Vitro; 2009 Aug; 23(5):808-15. PubMed ID: 19401228 [TBL] [Abstract][Full Text] [Related]
11. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Horie M; Nishio K; Fujita K; Endoh S; Miyauchi A; Saito Y; Iwahashi H; Yamamoto K; Murayama H; Nakano H; Nanashima N; Niki E; Yoshida Y Chem Res Toxicol; 2009 Mar; 22(3):543-53. PubMed ID: 19216582 [TBL] [Abstract][Full Text] [Related]
12. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Murdock RC; Braydich-Stolle L; Schrand AM; Schlager JJ; Hussain SM Toxicol Sci; 2008 Feb; 101(2):239-53. PubMed ID: 17872897 [TBL] [Abstract][Full Text] [Related]
13. Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. Dafinone MI; Feng G; Brugarolas T; Tettey KE; Lee D ACS Nano; 2011 Jun; 5(6):5078-87. PubMed ID: 21557541 [TBL] [Abstract][Full Text] [Related]
14. [Biotoxicology and biodynamics of silica nanoparticle]. Xue ZG; Zhu SH; Pan Q; Liang DS; Li YM; Liu XH; Xia K; Xia JH Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2006 Feb; 31(1):6-8. PubMed ID: 16562665 [TBL] [Abstract][Full Text] [Related]
15. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions. Love SA; Haynes CL Anal Bioanal Chem; 2010 Sep; 398(2):677-88. PubMed ID: 20428848 [TBL] [Abstract][Full Text] [Related]
16. ZnO, TiO(2), SiO(2,) and Al(2)O(3) nanoparticles-induced toxic effects on human fetal lung fibroblasts. Zhang XQ; Yin LH; Tang M; Pu YP Biomed Environ Sci; 2011 Dec; 24(6):661-9. PubMed ID: 22365403 [TBL] [Abstract][Full Text] [Related]
17. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Warheit DB; Reed KL; Sayes CM Inhal Toxicol; 2009 Jul; 21 Suppl 1():61-7. PubMed ID: 19558235 [TBL] [Abstract][Full Text] [Related]
19. In vitro toxicity of silica nanoparticles in human lung cancer cells. Lin W; Huang YW; Zhou XD; Ma Y Toxicol Appl Pharmacol; 2006 Dec; 217(3):252-9. PubMed ID: 17112558 [TBL] [Abstract][Full Text] [Related]
20. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Warheit DB; Brock WJ; Lee KP; Webb TR; Reed KL Toxicol Sci; 2005 Dec; 88(2):514-24. PubMed ID: 16177240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]