These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 20481675)

  • 1. Conformal invariance in (2+1)-dimensional stochastic systems.
    Moriconi L; Moriconi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041105. PubMed ID: 20481675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformal invariance of isoheight lines in a two-dimensional Kardar-Parisi-Zhang surface.
    Saberi AA; Niry MD; Fazeli SM; Rahimi Tabar MR; Rouhani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051607. PubMed ID: 18643079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchic trees with branching number close to one: Noiseless Kardar-Parisi-Zhang equation with additional linear term for imitating two-dimensional and three-dimensional phase transitions.
    Saakian DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):067104. PubMed ID: 12188870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic criticality far from equilibrium: One-loop flow of Burgers-Kardar-Parisi-Zhang systems with broken Galilean invariance.
    Strack P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032131. PubMed ID: 25871078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field-theoretic approach to neutron noise in nuclear reactors.
    Dechenaux B
    Phys Rev E; 2024 Apr; 109(4-1):044145. PubMed ID: 38755907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments on the Kardar-Parisi-Zhang surface-growth equation.
    Wio HS; Escudero C; Revelli JA; Deza RR; de la Lama MS
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1935):396-411. PubMed ID: 21149379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Out-of-time-ordered correlator in the one-dimensional Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations.
    Roy D; Huse DA; Kulkarni M
    Phys Rev E; 2023 Nov; 108(5-1):054112. PubMed ID: 38115452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kardar-Parisi-Zhang equation with temporally correlated noise: A nonperturbative renormalization group approach.
    Squizzato D; Canet L
    Phys Rev E; 2019 Dec; 100(6-1):062143. PubMed ID: 31962447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlocal Kardar-Parisi-Zhang equation to model interface growth.
    Kechagia P; Yortsos YC; Lichtner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016315. PubMed ID: 11461399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kardar-Parisi-Zhang modes in d-dimensional directed polymers.
    Schütz GM; Wehefritz-Kaufmann B
    Phys Rev E; 2017 Sep; 96(3-1):032119. PubMed ID: 29346934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: general framework and first applications.
    Canet L; Chaté H; Delamotte B; Wschebor N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061128. PubMed ID: 22304061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discretization-related issues in the Kardar-Parisi-Zhang equation: consistency, Galilean-invariance violation, and fluctuation-dissipation relation.
    Wio HS; Revelli JA; Deza RR; Escudero C; de La Lama MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066706. PubMed ID: 20866543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudospectral versus finite-difference schemes in the numerical integration of stochastic models of surface growth.
    Gallego R; Castro M; López JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051121. PubMed ID: 18233637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbative computation of nonlinear harvesting through a path integral approach.
    Giuliano ME; Combi B; dell'Erba MG; Sánchez AD
    Phys Rev E; 2024 Jan; 109(1-1):014210. PubMed ID: 38366396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superfluid phase transition with activated velocity fluctuations: Renormalization group approach.
    Dančo M; Hnatič M; Komarova MV; Lučivjanský T; Nalimov MY
    Phys Rev E; 2016 Jan; 93(1):012109. PubMed ID: 26871026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics.
    Halpin-Healy T; Lin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010103. PubMed ID: 24580153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Master equation approach to synchronization in diffusion-coupled nonlinear oscillators.
    Vance W; Ross J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3303-10. PubMed ID: 11088829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo framework for noncontinuous interactions between particles and classical fields.
    Wesp C; van Hees H; Meistrenko A; Greiner C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043302. PubMed ID: 25974607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.