These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20481725)

  • 1. Dynamics and structure of hydrogen-bonding glass formers: comparison between hexanetriol and sugar alcohols based on dielectric relaxation.
    Nakanishi M; Nozaki R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041501. PubMed ID: 20481725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic study of the glass transition in polyhydric alcohols.
    Nakanishi M; Nozaki R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051503. PubMed ID: 21728536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From strong to fragile glass formers: secondary relaxation in polyalcohols.
    Döss A; Paluch M; Sillescu H; Hinze G
    Phys Rev Lett; 2002 Mar; 88(9):095701. PubMed ID: 11864026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model of the cooperative rearranging region for polyhydric alcohols.
    Nakanishi M; Nozaki R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011503. PubMed ID: 21867174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of dielectric and structural relaxations in glass-forming secondary amides.
    Wang LM; Richert R
    J Chem Phys; 2005 Aug; 123(5):054516. PubMed ID: 16108678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric secondary relaxation of water in aqueous binary glass-formers.
    Sjöström J; Mattsson J; Bergman R; Johansson E; Josefsson K; Svantesson D; Swenson J
    Phys Chem Chem Phys; 2010 Sep; 12(35):10452-6. PubMed ID: 20601989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water dependence of the dielectric β-relaxation in poly(ε-caprolactone).
    Kuttich B; Lederle C; Stühn B
    J Chem Phys; 2013 Dec; 139(24):244907. PubMed ID: 24387396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of relaxation dynamics of a hydrogen-bonded glass former after removal of the hydrogen bonds.
    Grzybowska K; Pawlus S; Mierzwa M; Paluch M; Ngai KL
    J Chem Phys; 2006 Oct; 125(14):144507. PubMed ID: 17042609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols.
    Bauer S; Burlafinger K; Gainaru C; Lunkenheimer P; Hiller W; Loidl A; Böhmer R
    J Chem Phys; 2013 Mar; 138(9):094505. PubMed ID: 23485311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Debye type dielectric relaxation and the glass transition of alcohols.
    Wang LM; Richert R
    J Phys Chem B; 2005 Jun; 109(22):11091-4. PubMed ID: 16852352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols.
    Yomogida Y; Minoguchi A; Nozaki R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041510. PubMed ID: 16711812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols.
    Kadoya S; Fujii K; Izutsu K; Yonemochi E; Terada K; Yomota C; Kawanishi T
    Int J Pharm; 2010 Apr; 389(1-2):107-13. PubMed ID: 20097277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mobility in the supercooled and glassy states of nizatidine and perphenazine.
    Sailaja U; Shahin Thayyil M; Krishna Kumar NS; Govindaraj G; Ngai KL
    Eur J Pharm Sci; 2017 Mar; 99():147-151. PubMed ID: 27916696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?
    Voudouris P; Gomopoulos N; Le Grand A; Hadjichristidis N; Floudas G; Ediger MD; Fytas G
    J Chem Phys; 2010 Feb; 132(7):074906. PubMed ID: 20170250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on the predictability of the formation of glassy solid solutions of drugs in sugar alcohols.
    Langer M; Höltje M; Urbanetz NA; Brandt B; Höltje HD; Lippold BC
    Int J Pharm; 2003 Feb; 252(1-2):167-79. PubMed ID: 12550792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol.
    Ngai KL; Wang LM
    J Phys Chem B; 2019 Jan; 123(3):714-719. PubMed ID: 30601008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glassy dynamics and physical aging in fucose saccharides as studied by infrared- and broadband dielectric spectroscopy.
    Kossack W; Adrjanowicz K; Tarnacka M; Kipnusu WK; Dulski M; Mapesa EU; Kaminski K; Pawlus S; Paluch M; Kremer F
    Phys Chem Chem Phys; 2013 Dec; 15(47):20641-50. PubMed ID: 24190512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.