These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 20481727)

  • 1. Glassy dynamics under superhigh pressure.
    Pronin AA; Kondrin MV; Lyapin AG; Brazhkin VV; Volkov AA; Lunkenheimer P; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041503. PubMed ID: 20481727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband dielectric spectroscopy on benzophenone: alpha relaxation, beta relaxation, and mode coupling theory.
    Lunkenheimer P; Pardo LC; Köhler M; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031506. PubMed ID: 18517387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of glass-forming liquids. XII. Dielectric study of primary and secondary relaxations in ethylcyclohexane.
    Mandanici A; Huang W; Cutroni M; Richert R
    J Chem Phys; 2008 Mar; 128(12):124505. PubMed ID: 18376941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric spectroscopy in benzophenone: the beta relaxation and its relation to the mode-coupling Cole-Cole peak.
    Pardo LC; Lunkenheimer P; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):030502. PubMed ID: 17930190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary and secondary relaxations in bis-5-hydroxypentylphthalate.
    Maślanka S; Paluch M; Sułkowski WW; Roland CM
    J Chem Phys; 2005 Feb; 122(8):84511. PubMed ID: 15836067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure evolution of the excess wing in a type-B glass former.
    Casalini R; Roland CM
    Phys Rev Lett; 2003 Jul; 91(1):015702. PubMed ID: 12906552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids.
    Jakobsen B; Niss K; Olsen NB
    J Chem Phys; 2005 Dec; 123(23):234511. PubMed ID: 16392935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B; Maggi C; Christensen T; Dyre JC
    J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach.
    Rodrigues AC; Viciosa MT; Danède F; Affouard F; Correia NT
    Mol Pharm; 2014 Jan; 11(1):112-30. PubMed ID: 24215236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Dielectric Behavior of a Secondary Relaxation: Glassy D-Sorbitol.
    Samanta S; Richert R
    J Phys Chem B; 2015 Jul; 119(29):8909-16. PubMed ID: 25105940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural origins of Johari-Goldstein relaxation in a metallic glass.
    Liu YH; Fujita T; Aji DP; Matsuura M; Chen MW
    Nat Commun; 2014; 5():3238. PubMed ID: 24488115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The true Johari-Goldstein beta-relaxation of monosaccharides.
    Kaminski K; Kaminska E; Paluch M; Ziolo J; Ngai KL
    J Phys Chem B; 2006 Dec; 110(49):25045-9. PubMed ID: 17149928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation?
    Schneider U; Brand R; Lunkenheimer P; Loidl A
    Phys Rev Lett; 2000 Jun; 84(24):5560-3. PubMed ID: 10990994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of excess wing and beta-process in simple glass formers.
    Gainaru C; Kahlau R; Rössler EA; Böhmer R
    J Chem Phys; 2009 Nov; 131(18):184510. PubMed ID: 19916615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mobility in the supercooled and glassy states of nizatidine and perphenazine.
    Sailaja U; Shahin Thayyil M; Krishna Kumar NS; Govindaraj G; Ngai KL
    Eur J Pharm Sci; 2017 Mar; 99():147-151. PubMed ID: 27916696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of dielectric spectroscopy to monitor molecular mobility in glassy and supercooled trehalose.
    Bhardwaj SP; Suryanarayanan R
    J Phys Chem B; 2012 Sep; 116(38):11728-36. PubMed ID: 22913647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.