These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20481763)

  • 1. Structure-dependent wavelike energy transfer on pigment rings of individual light-harvesting-2 complexes from photosynthetic bacteria.
    Chu QJ; Weng YX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041917. PubMed ID: 20481763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral dependence of energy transfer in wild-type peripheral light-harvesting complexes of photosynthetic bacteria.
    Gall A; Sogaila E; Gulbinas V; Ilioaia O; Robert B; Valkunas L
    Biochim Biophys Acta; 2010 Aug; 1797(8):1465-9. PubMed ID: 20470750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. B800-B850 coherence correlates with energy transfer rates in the LH2 complex of photosynthetic purple bacteria.
    Smyth C; Oblinsky DG; Scholes GD
    Phys Chem Chem Phys; 2015 Dec; 17(46):30805-16. PubMed ID: 25797525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601.
    Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S
    Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoids and Photosynthesis.
    Hashimoto H; Uragami C; Cogdell RJ
    Subcell Biochem; 2016; 79():111-39. PubMed ID: 27485220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.
    Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A
    J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measures and implications of electronic coherence in photosynthetic light-harvesting.
    Smyth C; Fassioli F; Scholes GD
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3728-49. PubMed ID: 22753823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems.
    Hyeon-Deuk K; Tanimura Y; Cho M
    J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Are "giant" chlorosomes part of light-harvesting antennae of the photosynthetic apparatus in green bacteria?].
    Borisov AIu
    Biofizika; 2009; 54(3):434-41. PubMed ID: 19569502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems.
    Hu Z; Engel GS; Alharbi FH; Kais S
    J Chem Phys; 2018 Feb; 148(6):064304. PubMed ID: 29448771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path induced coherent energy transfer in light-harvesting complexes in purple bacteria.
    Sun K; Ye J; Zhao Y
    J Chem Phys; 2014 Sep; 141(12):124103. PubMed ID: 25273408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The observation of ultrafast excited-state dynamical evolution in B800- partially or completely released LH2 of Rhodobacter sphaeroides 601 at room temperature.
    Liu W; Liu Y; Yan Y; Liu K; Guo L; Xu C; Qian S
    J Biomol Struct Dyn; 2006 Apr; 23(5):529-36. PubMed ID: 16494502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. II. Exciton states of an elliptically deformed ring aggregate.
    Matsushita M; Ketelaars M; van Oijen AM; Köhler J; Aartsma TJ; Schmidt J
    Biophys J; 2001 Mar; 80(3):1604-14. PubMed ID: 11222321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of the exciton-phonon interactions in the PE545 light-harvesting complex.
    Viani L; Corbella M; Curutchet C; O'Reilly EJ; Olaya-Castro A; Mennucci B
    Phys Chem Chem Phys; 2014 Aug; 16(30):16302-11. PubMed ID: 24978840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variety, the spice of life and essential for robustness in excitation energy transfer in light-harvesting complexes.
    Oh SA; Coker DF; Hutchinson DAW
    Faraday Discuss; 2019 Dec; 221(0):59-76. PubMed ID: 31552998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria.
    Cupellini L; Caprasecca S; Guido CA; Müh F; Renger T; Mennucci B
    J Phys Chem Lett; 2018 Dec; 9(23):6892-6899. PubMed ID: 30449098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic light harvesting: excitons and coherence.
    Fassioli F; Dinshaw R; Arpin PC; Scholes GD
    J R Soc Interface; 2014 Mar; 11(92):20130901. PubMed ID: 24352671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting.
    Scholes GD; Smyth C
    J Chem Phys; 2014 Mar; 140(11):110901. PubMed ID: 24655162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.