BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20481773)

  • 1. Role of quantum heat bath and confinement in the low-temperature thermodynamics of cyclotron motion.
    Bandyopadhyay M; Dattagupta S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):042102. PubMed ID: 20481773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of quantum thermodynamic behavior of a charged magneto-oscillator with momentum dissipation.
    Rajesh A; Bandyopadhyay M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062116. PubMed ID: 25019734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative quantum systems and the heat capacity.
    Dattagupta S; Kumar J; Sinha S; Sreeram PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031136. PubMed ID: 20365726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind.
    Nieuwenhuizen TM; Allahverdyan AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036102. PubMed ID: 12366179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional entropy decay and the third law of thermodynamics.
    Wang CY; Zong XM; Zhang H; Yi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022126. PubMed ID: 25215708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum refrigerators and the third law of thermodynamics.
    Levy A; Alicki R; Kosloff R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061126. PubMed ID: 23005070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law.
    Hsiang JT; Chou CH; Subaşı Y; Hu BL
    Phys Rev E; 2018 Jan; 97(1-1):012135. PubMed ID: 29448480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature thermodynamics in the context of dissipative diamagnetism.
    Kumar J; Sreeram PA; Dattagupta S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021130. PubMed ID: 19391729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex methyl group and hydrogen-bonded proton motions in terms of the Arrhenius and Schrödinger equations.
    Latanowicz L
    Solid State Nucl Magn Reson; 2008; 34(1-2):93-104. PubMed ID: 18023155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gauging a quantum heat bath with dissipative Landau-Zener transitions.
    Wubs M; Saito K; Kohler S; Hänggi P; Kayanuma Y
    Phys Rev Lett; 2006 Nov; 97(20):200404. PubMed ID: 17155667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting work from a single thermal bath via quantum negentropy.
    Scully MO
    Phys Rev Lett; 2001 Nov; 87(22):220601. PubMed ID: 11736390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement.
    Boyacioglu B; Chatterjee A
    J Appl Phys; 2012 Oct; 112(8):83514. PubMed ID: 23185096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations.
    Valleau S; Eisfeld A; Aspuru-Guzik A
    J Chem Phys; 2012 Dec; 137(22):224103. PubMed ID: 23248983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dissipative Brownian motion and the Casimir effect.
    Ingold GL; Lambrecht A; Reynaud S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041113. PubMed ID: 19905279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic control by frequent quantum measurements.
    Erez N; Gordon G; Nest M; Kurizki G
    Nature; 2008 Apr; 452(7188):724-7. PubMed ID: 18401404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of Quantum Spin-Bath Depolarization.
    Dasari DBR
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistate electron transfer dynamics in the condensed phase: exact calculations from the reduced hierarchy equations of motion approach.
    Tanaka M; Tanimura Y
    J Chem Phys; 2010 Jun; 132(21):214502. PubMed ID: 20528026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.