These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 20481858)

  • 1. Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence.
    Belkhir A; Arar O; Benabbes SS; Lamrous O; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046705. PubMed ID: 20481858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures.
    Baida FI; Belkhir A
    Opt Lett; 2009 Aug; 34(16):2453-5. PubMed ID: 19684813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: application to the study of a radar dome.
    Belkhir A; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056701. PubMed ID: 18643189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models.
    Park J; Jung KY
    Opt Express; 2021 Jul; 29(14):21639-21654. PubMed ID: 34265947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation.
    Oh C; Escuti MJ
    Opt Express; 2006 Nov; 14(24):11870-84. PubMed ID: 19529610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.
    Yamaguchi T; Hinata T
    Opt Express; 2007 Sep; 15(18):11481-91. PubMed ID: 19547505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer-matrix approach for finite-difference time-domain simulation of periodic structures.
    Deinega A; Belousov S; Valuev I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053305. PubMed ID: 24329377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of the near-field of metallic nanoparticle gratings: localized surface plasmon resonance and SERS applications.
    Grimault AS; Vial A; Grand J; Lamy de la Chapelle M
    J Microsc; 2008 Mar; 229(Pt 3):428-32. PubMed ID: 18331490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.
    Wang XH; Yin WY; Chen ZZ
    Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.
    Banerjee S; Hoshino T; Cole JB
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1921-8. PubMed ID: 18677354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.
    Kong SC; Simpson JJ; Backman V
    IEEE Microw Wirel Compon Lett; 2008 Jan; 18(1):4-6. PubMed ID: 19844602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods.
    Grosges T; Vial A; Barchiesi D
    Opt Express; 2005 Oct; 13(21):8483-97. PubMed ID: 19498878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective optical response of silicon to sunlight in the finite-difference time-domain method.
    Deinega A; John S
    Opt Lett; 2012 Jan; 37(1):112-4. PubMed ID: 22212808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-difference time-domain and near-field-to-far-field transformation in the spectral domain: application to scattering objects with complex shapes in the vicinity of a semi-infinite dielectric medium.
    Muller J; Parent G; Jeandel G; Lacroix D
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):868-78. PubMed ID: 21532699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.
    Wang Z; Zhou X
    J Acoust Soc Am; 2016 Dec; 140(6):4276. PubMed ID: 28039989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation pressure of active dispersive chiral slabs.
    Wang M; Li H; Gao D; Gao L; Xu J; Qiu CW
    Opt Express; 2015 Jun; 23(13):16546-53. PubMed ID: 26191666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.