These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 20481858)
21. Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method. Valuev I; Deinega A; Belousov S Opt Lett; 2008 Jul; 33(13):1491-3. PubMed ID: 18594675 [TBL] [Abstract][Full Text] [Related]
22. Topology optimization of dispersive plasmonic nanostructures in the time-domain. Hassan E; CalĂ Lesina A Opt Express; 2022 May; 30(11):19557-19572. PubMed ID: 36221729 [TBL] [Abstract][Full Text] [Related]
23. FDTD scattered field formulation for scatterers in stratified dispersive media. Olkkonen J Opt Express; 2010 Mar; 18(5):4380-9. PubMed ID: 20389450 [TBL] [Abstract][Full Text] [Related]
24. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface. Sun W; Pan H; Videen G Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669 [TBL] [Abstract][Full Text] [Related]
25. Extraordinary optical transmission through periodic Drude-like graphene sheets using FDTD algorithms and its unconditionally stable approximate Crank-Nicolson implementation. Wu S; Sun Y; Chi M; Chen X Sci Rep; 2020 Oct; 10(1):17462. PubMed ID: 33060774 [TBL] [Abstract][Full Text] [Related]
26. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media. Zhao S Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222 [TBL] [Abstract][Full Text] [Related]
27. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media. Liu QH IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259 [TBL] [Abstract][Full Text] [Related]
28. Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators. Mirzaei-Ghormish S; Shahabadi M; Smalley DE Opt Express; 2022 Sep; 30(20):36332-36342. PubMed ID: 36258563 [TBL] [Abstract][Full Text] [Related]
29. Wave-vector and polarization dependent impedance model for a hexagonal periodic metasurface exemplified through finite-difference time-domain simulations. Ding YS; He Y Opt Express; 2017 Aug; 25(17):20757-20769. PubMed ID: 29041754 [TBL] [Abstract][Full Text] [Related]
30. Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media. Singh G; Tan EL; Chen ZN Opt Lett; 2012 Feb; 37(3):326-8. PubMed ID: 22297341 [TBL] [Abstract][Full Text] [Related]
31. Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm. Pernice WH; Payne FP; Gallagher DF Opt Express; 2007 Sep; 15(18):11433-43. PubMed ID: 19547501 [TBL] [Abstract][Full Text] [Related]
32. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach. Guo LX; Li J; Zeng H J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2383-92. PubMed ID: 19884936 [TBL] [Abstract][Full Text] [Related]
33. Expansion of the difference-field boundary element method for numerical analyses of various local defects in periodic surface-relief structures. Sugisaka J; Yasui T; Hirayama K J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):751-63. PubMed ID: 26366897 [TBL] [Abstract][Full Text] [Related]
34. Designing for beam propagation in periodic and nonperiodic photonic nanostructures: extended Hamiltonian method. Jiao Y; Fan S; Miller DA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036612. PubMed ID: 15524661 [TBL] [Abstract][Full Text] [Related]
35. Influence of the dispersive properties of metals on the transmission characteristics of left-handed materials. Panoiu NC; Osgood RM Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016611. PubMed ID: 12935274 [TBL] [Abstract][Full Text] [Related]
36. Propagation of few-cycle pulses in nonlinear Kerr media: harmonic generation. Xiao Y; Maywar DN; Agrawal GP Opt Lett; 2013 Mar; 38(5):724-6. PubMed ID: 23455278 [TBL] [Abstract][Full Text] [Related]
37. Near-field: a finite-difference time-dependent method for simulation of electrodynamics on small scales. Coomar A; Arntsen C; Lopata KA; Pistinner S; Neuhauser D J Chem Phys; 2011 Aug; 135(8):084121. PubMed ID: 21895173 [TBL] [Abstract][Full Text] [Related]
38. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition. Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394 [TBL] [Abstract][Full Text] [Related]
39. Finite-difference time-domain-based optical microscopy simulation of dispersive media facilitates the development of optical imaging techniques. Zhang D; Capoglu I; Li Y; Cherkezyan L; Chandler J; Spicer G; Subramanian H; Taflove A; Backman V J Biomed Opt; 2016 Jun; 21(6):65004. PubMed ID: 27283256 [TBL] [Abstract][Full Text] [Related]
40. Finite-difference time-domain analysis of frequency-selective surfaces in the mid-infrared. Skinner NG; Byrne DM Appl Opt; 2006 Mar; 45(9):1943-50. PubMed ID: 16579563 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]