These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 20481989)

  • 1. Discrete single-photon quantum walks with tunable decoherence.
    Broome MA; Fedrizzi A; Lanyon BP; Kassal I; Aspuru-Guzik A; White AG
    Phys Rev Lett; 2010 Apr; 104(15):153602. PubMed ID: 20481989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of quantum walks with negligible decoherence in waveguide lattices.
    Perets HB; Lahini Y; Pozzi F; Sorel M; Morandotti R; Silberberg Y
    Phys Rev Lett; 2008 May; 100(17):170506. PubMed ID: 18518267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum walks and wavepacket dynamics on a lattice with twisted photons.
    Cardano F; Massa F; Qassim H; Karimi E; Slussarenko S; Paparo D; de Lisio C; Sciarrino F; Santamato E; Boyd RW; Marrucci L
    Sci Adv; 2015 Mar; 1(2):e1500087. PubMed ID: 26601157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoherence and disorder in quantum walks: from ballistic spread to localization.
    Schreiber A; Cassemiro KN; Potoček V; Gábris A; Jex I; Silberhorn Ch
    Phys Rev Lett; 2011 May; 106(18):180403. PubMed ID: 21635071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum to classical transition for random walks.
    Brun TA; Carteret HA; Ambainis A
    Phys Rev Lett; 2003 Sep; 91(13):130602. PubMed ID: 14525294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of quantum walks on a circle with polar molecules via optimal control.
    Ding YK; Zhang ZY; Liu JM
    J Chem Phys; 2023 Nov; 159(20):. PubMed ID: 38010330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photon propagation in a discrete fiber network: an interplay of coherence and losses.
    Regensburger A; Bersch C; Hinrichs B; Onishchukov G; Schreiber A; Silberhorn C; Peschel U
    Phys Rev Lett; 2011 Dec; 107(23):233902. PubMed ID: 22182090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum walks of correlated photons.
    Peruzzo A; Lobino M; Matthews JC; Matsuda N; Politi A; Poulios K; Zhou XQ; Lahini Y; Ismail N; Wörhoff K; Bromberg Y; Silberberg Y; Thompson MG; OBrien JL
    Science; 2010 Sep; 329(5998):1500-3. PubMed ID: 20847264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling photons in a box and exploring the quantum to classical boundary (Nobel Lecture).
    Haroche S
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10159-78. PubMed ID: 24038846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of quantum information encoded on three-photon decoherence-free states via cross-Kerr nonlinearities.
    Heo J; Kang MS; Hong CH; Hong JP; Choi SG
    Sci Rep; 2018 Sep; 8(1):13843. PubMed ID: 30218095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete-Time Quantum Walk on Multilayer Networks.
    Jayakody MN; Pradhan P; Ben Porath D; Cohen E
    Entropy (Basel); 2023 Nov; 25(12):. PubMed ID: 38136490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum walks on the N-cycle subject to decoherence on the coin degree of freedom.
    Liu C; Petulante N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031113. PubMed ID: 20365703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subnatural linewidth single photons from a quantum dot.
    Matthiesen C; Vamivakas AN; Atatüre M
    Phys Rev Lett; 2012 Mar; 108(9):093602. PubMed ID: 22463634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors.
    Wang HF; Zhang S; Zhu AD; Yi XX; Yeon KH
    Opt Express; 2011 Dec; 19(25):25433-40. PubMed ID: 22273935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-atom single-photon quantum interface.
    Wilk T; Webster SC; Kuhn A; Rempe G
    Science; 2007 Jul; 317(5837):488-90. PubMed ID: 17588899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoherence of matter waves by thermal emission of radiation.
    Hackermüller L; Hornberger K; Brezger B; Zeilinger A; Arndt M
    Nature; 2004 Feb; 427(6976):711-4. PubMed ID: 14973478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing quantum walks through coherent control of high-dimensionally entangled photons.
    Imany P; Lingaraju NB; Alshaykh MS; Leaird DE; Weiner AM
    Sci Adv; 2020 Jul; 6(29):eaba8066. PubMed ID: 32832628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic random walks with traps.
    Longhi S
    Opt Lett; 2024 May; 49(10):2809-2812. PubMed ID: 38748167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deutsch-jozsa algorithm using triggered single photons from a single quantum dot.
    Scholz M; Aichele T; Ramelow S; Benson O
    Phys Rev Lett; 2006 May; 96(18):180501. PubMed ID: 16712351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.