These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20482004)

  • 1. Antibunching of thermal radiation by a room-temperature phonon bath: a numerically solvable model for a strongly interacting light-matter-reservoir system.
    Carmele A; Richter M; Chow WW; Knorr A
    Phys Rev Lett; 2010 Apr; 104(15):156801. PubMed ID: 20482004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system.
    Kaer P; Nielsen TR; Lodahl P; Jauho AP; Mørk J
    Phys Rev Lett; 2010 Apr; 104(15):157401. PubMed ID: 20482014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system.
    Zhang X; Li R; Wu H
    Sci Rep; 2016 Mar; 6():22560. PubMed ID: 26936334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices.
    Rodríguez-Lara BM; Soto-Eguibar F; Cárdenas AZ; Moya-Cessa HM
    Opt Express; 2013 May; 21(10):12888-98. PubMed ID: 23736508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum correlation among photons from a single quantum dot at room temperature.
    Michler P; Imamoglu A; Mason MD; Carson PJ; Strouse GF; Buratto SK
    Nature; 2000 Aug; 406(6799):968-70. PubMed ID: 10984045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators.
    Yin TS; Jin GR; Chen A
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model of the optical emission of a driven semiconductor quantum dot: phonon-enhanced coherent scattering and off-resonant sideband narrowing.
    McCutcheon DP; Nazir A
    Phys Rev Lett; 2013 May; 110(21):217401. PubMed ID: 23745930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems.
    Baimuratov AS; Rukhlenko ID; Leonov MY; Shalkovskiy AG; Baranov AV; Fedorov AV
    Opt Express; 2014 Aug; 22(16):19707-25. PubMed ID: 25321054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].
    Xiao JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):598-601. PubMed ID: 19455781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade.
    Müller K; Rundquist A; Fischer KA; Sarmiento T; Lagoudakis KG; Kelaita YA; Sánchez Muñoz C; del Valle E; Laussy FP; Vučković J
    Phys Rev Lett; 2015 Jun; 114(23):233601. PubMed ID: 26196801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects.
    Roy C; Hughes S
    Phys Rev Lett; 2011 Jun; 106(24):247403. PubMed ID: 21770598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heralded single-phonon preparation, storage, and readout in cavity optomechanics.
    Galland C; Sangouard N; Piro N; Gisin N; Kippenberg TJ
    Phys Rev Lett; 2014 Apr; 112(14):143602. PubMed ID: 24765960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Few-photon model of the optical emission of semiconductor quantum dots.
    Richter M; Carmele A; Sitek A; Knorr A
    Phys Rev Lett; 2009 Aug; 103(8):087407. PubMed ID: 19792765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonclassical effects of a two-level spin system interacting with a two-mode cavity field via two-photon transition.
    Grinberg H
    J Phys Chem B; 2008 Dec; 112(50):16140-57. PubMed ID: 19053679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon.
    Anderson MD; Tarrago Velez S; Seibold K; Flayac H; Savona V; Sangouard N; Galland C
    Phys Rev Lett; 2018 Jun; 120(23):233601. PubMed ID: 29932714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.