These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 20482014)

  • 21. Microwave Detection of Electron-Phonon Interactions in a Cavity-Coupled Double Quantum Dot.
    Hartke TR; Liu YY; Gullans MJ; Petta JR
    Phys Rev Lett; 2018 Mar; 120(9):097701. PubMed ID: 29547336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity.
    Madsen KH; Ates S; Lund-Hansen T; Löffler A; Reitzenstein S; Forchel A; Lodahl P
    Phys Rev Lett; 2011 Jun; 106(23):233601. PubMed ID: 21770504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities.
    Liu ZD; Lyyra H; Sun YN; Liu BH; Li CF; Guo GC; Maniscalco S; Piilo J
    Nat Commun; 2018 Aug; 9(1):3453. PubMed ID: 30150668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics.
    Grange T; Somaschi N; Antón C; De Santis L; Coppola G; Giesz V; Lemaître A; Sagnes I; Auffèves A; Senellart P
    Phys Rev Lett; 2017 Jun; 118(25):253602. PubMed ID: 28696749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon-induced exciton dephasing in quantum dot molecules.
    Muljarov EA; Takagahara T; Zimmermann R
    Phys Rev Lett; 2005 Oct; 95(17):177405. PubMed ID: 16383869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems.
    Suffczyński J; Dousse A; Gauthron K; Lemaître A; Sagnes I; Lanco L; Bloch J; Voisin P; Senellart P
    Phys Rev Lett; 2009 Jul; 103(2):027401. PubMed ID: 19659240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-markovian decoherence of localized nanotube excitons by acoustic phonons.
    Galland C; Högele A; Türeci HE; Imamoğlu A
    Phys Rev Lett; 2008 Aug; 101(6):067402. PubMed ID: 18764501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermoelectric Inversion in a Resonant Quantum Dot-Cavity System in the Steady-State Regime.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31091757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detuning-dependent Mollow triplet of a coherently-driven single quantum dot.
    Ulhaq A; Weiler S; Roy C; Ulrich SM; Jetter M; Hughes S; Michler P
    Opt Express; 2013 Feb; 21(4):4382-95. PubMed ID: 23481972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-Markovian quantum jumps in excitonic energy transfer.
    Rebentrost P; Chakraborty R; Aspuru-Guzik A
    J Chem Phys; 2009 Nov; 131(18):184102. PubMed ID: 19916593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalization and sideband linewidth insensitivity.
    Wei YJ; He Y; He YM; Lu CY; Pan JW; Schneider C; Kamp M; Höfling S; McCutcheon DP; Nazir A
    Phys Rev Lett; 2014 Aug; 113(9):097401. PubMed ID: 25216004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor Quantum Dots to Optical Cavities.
    Jarlov C; Wodey É; Lyasota A; Calic M; Gallo P; Dwir B; Rudra A; Kapon E
    Phys Rev Lett; 2016 Aug; 117(7):076801. PubMed ID: 27563983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Opt Express; 2008 Oct; 16(22):18067-81. PubMed ID: 18958086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum dephasing induced by non-Markovian random telegraph noise.
    Cai X
    Sci Rep; 2020 Jan; 10(1):88. PubMed ID: 31919455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.