These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 20482057)

  • 1. Implosion experiments using glass ablators for direct-drive inertial confinement fusion.
    Smalyuk VA; Betti R; Delettrez JA; Glebov VY; Meyerhofer DD; Radha PB; Regan SP; Sangster TC; Sanz J; Seka W; Stoeckl C; Yaakobi B; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2010 Apr; 104(16):165002. PubMed ID: 20482057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of hot-electron preheating in the compression of direct-drive imploding targets with cryogenic D2 ablators.
    Smalyuk VA; Shvarts D; Betti R; Delettrez JA; Edgell DH; Glebov VY; Goncharov VN; McCrory RL; Meyerhofer DD; Radha PB; Regan SP; Sangster TC; Seka W; Skupsky S; Stoeckl C; Yaakobi B; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2008 May; 100(18):185005. PubMed ID: 18518385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of plastic-ablator compressibility for direct-drive inertial confinement fusion on OMEGA.
    Hu SX; Smalyuk VA; Goncharov VN; Knauer JP; Radha PB; Igumenshchev IV; Marozas JA; Stoeckl C; Yaakobi B; Shvarts D; Sangster TC; McKenty PW; Meyerhofer DD; Skupsky S; McCrory RL
    Phys Rev Lett; 2008 May; 100(18):185003. PubMed ID: 18518383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments.
    Rosenberg MJ; Solodov AA; Myatt JF; Seka W; Michel P; Hohenberger M; Short RW; Epstein R; Regan SP; Campbell EM; Chapman T; Goyon C; Ralph JE; Barrios MA; Moody JD; Bates JW
    Phys Rev Lett; 2018 Feb; 120(5):055001. PubMed ID: 29481170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot-electron preheat and mitigation in polar-direct-drive experiments at the National Ignition Facility.
    Solodov AA; Rosenberg MJ; Stoeckl M; Christopherson AR; Betti R; Radha PB; Stoeckl C; Hohenberger M; Bachmann B; Epstein R; Follett RK; Seka W; Myatt JF; Michel P; Regan SP; Palastro JP; Froula DH; Campbell EM; Goncharov VN
    Phys Rev E; 2022 Nov; 106(5-2):055204. PubMed ID: 36559374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion.
    Froula DH; Yaakobi B; Hu SX; Chang PY; Craxton RS; Edgell DH; Follett R; Michel DT; Myatt JF; Seka W; Short RW; Solodov A; Stoeckl C
    Phys Rev Lett; 2012 Apr; 108(16):165003. PubMed ID: 22680726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.
    Xu B; Hu SX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016408. PubMed ID: 21867323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of shell mix on feedthrough in direct drive inertial confinement fusion.
    Regan SP; Delettrez JA; Goncharov VN; Marshall FJ; Soures JM; Smalyuk VA; Radha PB; Yaakobi B; Epstein R; Glebov VY; Jaanimagi PA; Meyerhofer DD; Sangster TC; Seka W; Skupsky S; Stoeckl C; Haynes DA; Frenje JA; Li CK; Petrasso RD; Séguin FH
    Phys Rev Lett; 2004 May; 92(18):185002. PubMed ID: 15169493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.
    Ma T; Hurricane OA; Callahan DA; Barrios MA; Casey DT; Dewald EL; Dittrich TR; Döppner T; Haan SW; Hinkel DE; Berzak Hopkins LF; Le Pape S; MacPhee AG; Pak A; Park HS; Patel PK; Remington BA; Robey HF; Salmonson JD; Springer PT; Tommasini R; Benedetti LR; Bionta R; Bond E; Bradley DK; Caggiano J; Celliers P; Cerjan CJ; Church JA; Dixit S; Dylla-Spears R; Edgell D; Edwards MJ; Field J; Fittinghoff DN; Frenje JA; Gatu Johnson M; Grim G; Guler N; Hatarik R; Herrmann HW; Hsing WW; Izumi N; Jones OS; Khan SF; Kilkenny JD; Knauer J; Kohut T; Kozioziemski B; Kritcher A; Kyrala G; Landen OL; MacGowan BJ; Mackinnon AJ; Meezan NB; Merrill FE; Moody JD; Nagel SR; Nikroo A; Parham T; Ralph JE; Rosen MD; Rygg JR; Sater J; Sayre D; Schneider MB; Shaughnessy D; Spears BK; Town RP; Volegov PL; Wan A; Widmann K; Wilde CH; Yeamans C
    Phys Rev Lett; 2015 Apr; 114(14):145004. PubMed ID: 25910132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.
    Park HS; Hurricane OA; Callahan DA; Casey DT; Dewald EL; Dittrich TR; Döppner T; Hinkel DE; Berzak Hopkins LF; Le Pape S; Ma T; Patel PK; Remington BA; Robey HF; Salmonson JD; Kline JL
    Phys Rev Lett; 2014 Feb; 112(5):055001. PubMed ID: 24580603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Measurements of DT Fuel Preheat from Hot Electrons in Direct-Drive Inertial Confinement Fusion.
    Christopherson AR; Betti R; Forrest CJ; Howard J; Theobald W; Delettrez JA; Rosenberg MJ; Solodov AA; Stoeckl C; Patel D; Gopalaswamy V; Cao D; Peebles JL; Edgell DH; Seka W; Epstein R; Wei MS; Gatu Johnson M; Simpson R; Regan SP; Campbell EM
    Phys Rev Lett; 2021 Jul; 127(5):055001. PubMed ID: 34397224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited).
    Hohenberger M; Albert F; Palmer NE; Lee JJ; Döppner T; Divol L; Dewald EL; Bachmann B; MacPhee AG; LaCaille G; Bradley DK; Stoeckl C
    Rev Sci Instrum; 2014 Nov; 85(11):11D501. PubMed ID: 25430175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited).
    Tommasini R; MacPhee A; Hey D; Ma T; Chen C; Izumi N; Unites W; MacKinnon A; Hatchett SP; Remington BA; Park HS; Springer P; Koch JA; Landen OL; Seely J; Holland G; Hudson L
    Rev Sci Instrum; 2008 Oct; 79(10):10E901. PubMed ID: 19044556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shock-Augmented Ignition Approach to Laser Inertial Fusion.
    Scott RHH; Barlow D; Trickey W; Ruocco A; Glize K; Antonelli L; Khan M; Woolsey NC
    Phys Rev Lett; 2022 Nov; 129(19):195001. PubMed ID: 36399760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-direct-drive fusion target design with a high-Z gradient-density pusher shell.
    Hu SX; Ceurvorst L; Peebles JL; Mao A; Li P; Lu Y; Shvydky A; Goncharov VN; Epstein R; Nichols KA; Goshadze RMN; Ghosh M; Hinz J; Karasiev VV; Zhang S; Shaffer NR; Mihaylov DI; Cappelletti J; Harding DR; Li CK; Campbell EM; Shah RC; Collins TJB; Regan SP; Deeney C
    Phys Rev E; 2023 Sep; 108(3-2):035209. PubMed ID: 37849111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of the improved rocket efficiency in direct-drive implosions using different ablator materials.
    Michel DT; Goncharov VN; Igumenshchev IV; Epstein R; Froula DH
    Phys Rev Lett; 2013 Dec; 111(24):245005. PubMed ID: 24483672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron Shock Ignition of Inertial Fusion Targets.
    Shang WL; Betti R; Hu SX; Woo K; Hao L; Ren C; Christopherson AR; Bose A; Theobald W
    Phys Rev Lett; 2017 Nov; 119(19):195001. PubMed ID: 29219482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Plasmon Decay Mitigation in Direct-Drive Inertial-Confinement-Fusion Experiments Using Multilayer Targets.
    Follett RK; Delettrez JA; Edgell DH; Goncharov VN; Henchen RJ; Katz J; Michel DT; Myatt JF; Shaw J; Solodov AA; Stoeckl C; Yaakobi B; Froula DH
    Phys Rev Lett; 2016 Apr; 116(15):155002. PubMed ID: 27127973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deleterious effects of nonthermal electrons in shock ignition concept.
    Nicolaï P; Feugeas JL; Touati M; Ribeyre X; Gus'kov S; Tikhonchuk V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033107. PubMed ID: 24730956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.
    Ma T; Patel PK; Izumi N; Springer PT; Key MH; Atherton LJ; Benedetti LR; Bradley DK; Callahan DA; Celliers PM; Cerjan CJ; Clark DS; Dewald EL; Dixit SN; Döppner T; Edgell DH; Epstein R; Glenn S; Grim G; Haan SW; Hammel BA; Hicks D; Hsing WW; Jones OS; Khan SF; Kilkenny JD; Kline JL; Kyrala GA; Landen OL; Le Pape S; MacGowan BJ; Mackinnon AJ; MacPhee AG; Meezan NB; Moody JD; Pak A; Parham T; Park HS; Ralph JE; Regan SP; Remington BA; Robey HF; Ross JS; Spears BK; Smalyuk V; Suter LJ; Tommasini R; Town RP; Weber SV; Lindl JD; Edwards MJ; Glenzer SH; Moses EI
    Phys Rev Lett; 2013 Aug; 111(8):085004. PubMed ID: 24010449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.