These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20482086)

  • 41. Structural and thermodynamics characters of isolated α-syn12 peptide: long-time temperature replica-exchange molecular dynamics in aqueous solution.
    Cao Z; Liu L; Wu P; Wang J
    Acta Biochim Biophys Sin (Shanghai); 2011 Mar; 43(3):172-80. PubMed ID: 21289072
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding thermodynamics of three beta-sheet peptides: a model study.
    Irbäck A; Sjunnesson F
    Proteins; 2004 Jul; 56(1):110-6. PubMed ID: 15162491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Monte Carlo simulations of proteins in cages: influence of confinement on the stability of intermediate states.
    Ojeda P; Garcia ME; Londoño A; Chen NY
    Biophys J; 2009 Feb; 96(3):1076-82. PubMed ID: 18849410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-templated nucleation in peptide and protein aggregation.
    Auer S; Dobson CM; Vendruscolo M; Maritan A
    Phys Rev Lett; 2008 Dec; 101(25):258101. PubMed ID: 19113754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The coarse-grained OPEP force field for non-amyloid and amyloid proteins.
    Chebaro Y; Pasquali S; Derreumaux P
    J Phys Chem B; 2012 Aug; 116(30):8741-52. PubMed ID: 22742737
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cyclic beta-helical/beta-hairpin D,L-alpha-peptide: study of its folding properties and structure refinement using molecular dynamics.
    Meier K; van Gunsteren WF
    J Phys Chem A; 2010 Feb; 114(4):1852-9. PubMed ID: 20055405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Terminal-group effects on the folding behavior of selected beta-peptides.
    Gee PJ; van Gunsteren WF
    Proteins; 2006 Apr; 63(1):136-43. PubMed ID: 16435370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A coarse-grained model for the formation of alpha helix with a noninteger period on simple cubic lattices.
    Chen Y; Zhang Q; Ding J
    J Chem Phys; 2006 May; 124(18):184903. PubMed ID: 16709135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermally induced phase transition in helical comblike poly(beta-peptide)s: an atomistic simulation.
    Zanuy D; Alemán C; Laso M; Muñoz-Guerra S
    J Comput Chem; 2003 Apr; 24(6):770-8. PubMed ID: 12666169
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spontaneous beta-barrel formation: an all-atom Monte Carlo study of Abeta16-22 oligomerization.
    Irbäck A; Mitternacht S
    Proteins; 2008 Apr; 71(1):207-14. PubMed ID: 17932914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generating ensemble averages for small proteins from extended conformations by Monte Carlo simulations.
    Derreumaux P
    Phys Rev Lett; 2000 Jul; 85(1):206-9. PubMed ID: 10991195
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lattice model simulations of the effects of the position of a peptide trigger segment on helix folding and dimerization.
    Bhandari YR; Chapagain PP; Gerstman BS
    J Chem Phys; 2012 Sep; 137(10):105103. PubMed ID: 22979897
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent.
    Turner DR; Kubelka J
    J Phys Chem B; 2007 Feb; 111(7):1834-45. PubMed ID: 17256894
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bader's electron density analysis of hydrogen bonding in secondary structural elements of protein.
    Parthasarathi R; Raman SS; Subramanian V; Ramasami T
    J Phys Chem A; 2007 Aug; 111(30):7141-8. PubMed ID: 17602540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural analysis of a helical peptide unfolding pathway.
    Diana D; Ziaco B; Scarabelli G; Pedone C; Colombo G; D'Andrea LD; Fattorusso R
    Chemistry; 2010 May; 16(18):5400-7. PubMed ID: 20358558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transition of Metastable Cross-α Crystals into Cross-β Fibrils by β-Turn Flipping.
    Mondal S; Jacoby G; Sawaya MR; Arnon ZA; Adler-Abramovich L; Rehak P; Vuković L; Shimon LJW; Král P; Beck R; Gazit E
    J Am Chem Soc; 2019 Jan; 141(1):363-369. PubMed ID: 30532955
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Folding and stability of helical bundle proteins from coarse-grained models.
    Kapoor A; Travesset A
    Proteins; 2013 Jul; 81(7):1200-11. PubMed ID: 23426892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting unfolding thermodynamics and stable intermediates for alanine-rich helical peptides with the aid of coarse-grained molecular simulation.
    Calero-Rubio C; Paik B; Jia X; Kiick KL; Roberts CJ
    Biophys Chem; 2016 Oct; 217():8-19. PubMed ID: 27486699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A kMC-MD method with generalized move-sets for the simulation of folding of α-helical and β-stranded peptides.
    Peter EK; Pivkin IV; Shea JE
    J Chem Phys; 2015 Apr; 142(14):144903. PubMed ID: 25877593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Water-soluble beta-sheet models which self-assemble into fibrillar structures.
    Janek K; Behlke J; Zipper J; Fabian H; Georgalis Y; Beyermann M; Bienert M; Krause E
    Biochemistry; 1999 Jun; 38(26):8246-52. PubMed ID: 10387070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.