These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20482140)

  • 21. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.
    Umari P; Petrenko O; Taioli S; De Souza MM
    J Chem Phys; 2012 May; 136(18):181101. PubMed ID: 22583270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical properties and photonic devices of doped carbon nanotubes.
    Zhao J; Chen X; Xie JR
    Anal Chim Acta; 2006 May; 568(1-2):161-70. PubMed ID: 17761257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size, dimensionality, and strong electron correlation in nanoscience.
    Brus L
    Acc Chem Res; 2014 Oct; 47(10):2951-9. PubMed ID: 25120173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption.
    Shim M; Ozel T; Gaur A; Wang C
    J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?
    Denis PA; Faccio R; Mombru AW
    Chemphyschem; 2009 Mar; 10(4):715-22. PubMed ID: 19189365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. First-principles studies of SnS2 nanotubes: a potential semiconductor nanowire.
    Chang H; In E; Kong KJ; Lee JO; Choi Y; Ryu BH
    J Phys Chem B; 2005 Jan; 109(1):30-2. PubMed ID: 16850978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes.
    Yoo S; Zhao S; Wang F
    Phys Rev Lett; 2021 Dec; 127(25):257702. PubMed ID: 35029454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices.
    Duan X; Huang Y; Cui Y; Wang J; Lieber CM
    Nature; 2001 Jan; 409(6816):66-9. PubMed ID: 11343112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semiconducting monolayer materials as a tunable platform for excitonic solar cells.
    Bernardi M; Palummo M; Grossman JC
    ACS Nano; 2012 Nov; 6(11):10082-9. PubMed ID: 23062107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.
    Ghosh S; Bachilo SM; Simonette RA; Beckingham KM; Weisman RB
    Science; 2010 Dec; 330(6011):1656-9. PubMed ID: 21109631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance Raman signature of intertube excitons in compositionally-defined carbon nanotube bundles.
    Simpson JR; Roslyak O; Duque JG; Hároz EH; Crochet JJ; Telg H; Piryatinski A; Walker ARH; Doorn SK
    Nat Commun; 2018 Feb; 9(1):637. PubMed ID: 29434198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity.
    Wu Z; Dong F; Zhao W; Wang H; Liu Y; Guan B
    Nanotechnology; 2009 Jun; 20(23):235701. PubMed ID: 19451679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elastic exciton-exciton scattering in photoexcited carbon nanotubes.
    Nguyen DT; Voisin C; Roussignol P; Roquelet C; Lauret JS; Cassabois G
    Phys Rev Lett; 2011 Sep; 107(12):127401. PubMed ID: 22026798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.
    Manna AK; Pati SK
    Nanoscale; 2010 Jul; 2(7):1190-5. PubMed ID: 20648348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring carbon nanotube band gaps through leakage current and excitonic transitions of nanotube diodes.
    Malapanis A; Jones DA; Comfort E; Lee JU
    Nano Lett; 2011 May; 11(5):1946-51. PubMed ID: 21469693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors.
    Gao S; Liang Y; Spataru CD; Yang L
    Nano Lett; 2016 Sep; 16(9):5568-73. PubMed ID: 27479740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.