These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20482156)

  • 1. Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice.
    Jördens R; Tarruell L; Greif D; Uehlinger T; Strohmaier N; Moritz H; Esslinger T; De Leo L; Kollath C; Georges A; Scarola V; Pollet L; Burovski E; Kozik E; Troyer M
    Phys Rev Lett; 2010 May; 104(18):180401. PubMed ID: 20482156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics and magnetic properties of the anisotropic 3D Hubbard model.
    Imriška J; Iazzi M; Wang L; Gull E; Greif D; Uehlinger T; Jotzu G; Tarruell L; Esslinger T; Troyer M
    Phys Rev Lett; 2014 Mar; 112(11):115301. PubMed ID: 24702384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Néel transition of lattice fermions in a harmonic trap: a real-space dynamic mean-field study.
    Gorelik EV; Titvinidze I; Hofstetter W; Snoek M; Blümer N
    Phys Rev Lett; 2010 Aug; 105(6):065301. PubMed ID: 20867987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressibility of a fermionic mott insulator of ultracold atoms.
    Duarte PM; Hart RA; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Hulet RG
    Phys Rev Lett; 2015 Feb; 114(7):070403. PubMed ID: 25763942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice.
    Schneider U; Hackermüller L; Will S; Best T; Bloch I; Costi TA; Helmes RW; Rasch D; Rosch A
    Science; 2008 Dec; 322(5907):1520-5. PubMed ID: 19056980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of mass-imbalanced ultracold fermionic mixtures for approaching quantum magnetism in optical lattices.
    Sotnikov A; Cocks D; Hofstetter W
    Phys Rev Lett; 2012 Aug; 109(6):065301. PubMed ID: 23006278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Certifying the Adiabatic Preparation of Ultracold Lattice Bosons in the Vicinity of the Mott Transition.
    Carcy C; Hercé G; Tenart A; Roscilde T; Clément D
    Phys Rev Lett; 2021 Jan; 126(4):045301. PubMed ID: 33576669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring competing density order in the ionic Hubbard model with ultracold fermions.
    Messer M; Desbuquois R; Uehlinger T; Jotzu G; Huber S; Greif D; Esslinger T
    Phys Rev Lett; 2015 Sep; 115(11):115303. PubMed ID: 26406839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum State Engineering of a Hubbard System with Ultracold Fermions.
    Chiu CS; Ji G; Mazurenko A; Greif D; Greiner M
    Phys Rev Lett; 2018 Jun; 120(24):243201. PubMed ID: 29956952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mott criticality and pseudogap in Bose-Fermi mixtures.
    Altman E; Demler E; Rosch A
    Phys Rev Lett; 2012 Dec; 109(23):235304. PubMed ID: 23368218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two fermions in a double well: exploring a fundamental building block of the Hubbard model.
    Murmann S; Bergschneider A; Klinkhamer VM; Zürn G; Lompe T; Jochim S
    Phys Rev Lett; 2015 Feb; 114(8):080402. PubMed ID: 25768739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel superfluidity in a trapped gas of Fermi atoms with repulsive interaction loaded on an optical lattice.
    Machida M; Yamada S; Ohashi Y; Matsumoto H
    Phys Rev Lett; 2004 Nov; 93(20):200402. PubMed ID: 15600902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial graphene with tunable interactions.
    Uehlinger T; Jotzu G; Messer M; Greif D; Hofstetter W; Bissbort U; Esslinger T
    Phys Rev Lett; 2013 Nov; 111(18):185307. PubMed ID: 24237536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical arrest of ultracold lattice fermions.
    Schmidt B; Bakhtiari MR; Titvinidze I; Schneider U; Snoek M; Hofstetter W
    Phys Rev Lett; 2013 Feb; 110(7):075302. PubMed ID: 25166379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of elastic doublon decay in the Fermi-Hubbard model.
    Strohmaier N; Greif D; Jördens R; Tarruell L; Moritz H; Esslinger T; Sensarma R; Pekker D; Altman E; Demler E
    Phys Rev Lett; 2010 Feb; 104(8):080401. PubMed ID: 20366917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiband spectroscopy of ultracold fermions: observation of reduced tunneling in attractive Bose-Fermi mixtures.
    Heinze J; Götze S; Krauser JS; Hundt B; Fläschner N; Lühmann DS; Becker C; Sengstock K
    Phys Rev Lett; 2011 Sep; 107(13):135303. PubMed ID: 22026869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of the 3D Hubbard model on approaching the Néel transition.
    Fuchs S; Gull E; Pollet L; Burovski E; Kozik E; Pruschke T; Troyer M
    Phys Rev Lett; 2011 Jan; 106(3):030401. PubMed ID: 21405260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.