These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20482178)

  • 21. Enhanced diffusion and ordering of self-propelled rods.
    Baskaran A; Marchetti MC
    Phys Rev Lett; 2008 Dec; 101(26):268101. PubMed ID: 19113789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonequilibrium clustering of self-propelled rods.
    Peruani F; Deutsch A; Bär M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):030904. PubMed ID: 17025586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collective motion of rod-shaped self-propelled particles through collision.
    Nagai KH
    Biophys Physicobiol; 2018; 15():51-57. PubMed ID: 29607280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Propelled Particles with Velocity Reversals and Ferromagnetic Alignment: Active Matter Class with Second-Order Transition to Quasi-Long-Range Polar Order.
    Mahault B; Jiang XC; Bertin E; Ma YQ; Patelli A; Shi XQ; Chaté H
    Phys Rev Lett; 2018 Jun; 120(25):258002. PubMed ID: 29979075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods.
    Bertin E; Baskaran A; Chaté H; Marchetti MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042141. PubMed ID: 26565202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phase separation of self-propelled disks with ferromagnetic and nematic alignment.
    Sesé-Sansa E; Levis D; Pagonabarraga I
    Phys Rev E; 2021 Nov; 104(5-1):054611. PubMed ID: 34942723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Swarm behavior of self-propelled rods and swimming flagella.
    Yang Y; Marceau V; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031904. PubMed ID: 21230105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competing ferromagnetic and nematic alignment in self-propelled polar particles.
    Ngo S; Ginelli F; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):050101. PubMed ID: 23214726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complex self-propelled rings: a minimal model for cell motility.
    Abaurrea Velasco C; Dehghani Ghahnaviyeh S; Nejat Pishkenari H; Auth T; Gompper G
    Soft Matter; 2017 Sep; 13(35):5865-5876. PubMed ID: 28766641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates.
    Barberis L; Peruani F
    Phys Rev Lett; 2016 Dec; 117(24):248001. PubMed ID: 28009185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding collective dynamics of soft active colloids by binary scattering.
    Hanke T; Weber CA; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052309. PubMed ID: 24329266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Onset of collective and cohesive motion.
    Grégoire G; Chaté H
    Phys Rev Lett; 2004 Jan; 92(2):025702. PubMed ID: 14753946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods.
    Kuan HS; Blackwell R; Hough LE; Glaser MA; Betterton MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(6):060501. PubMed ID: 26764616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capturing self-propelled particles in a moving microwedge.
    Kaiser A; Popowa K; Wensink HH; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022311. PubMed ID: 24032837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-propelled rods exhibit a phase-separated state characterized by the presence of active stresses and the ejection of polar clusters.
    Weitz S; Deutsch A; Peruani F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012322. PubMed ID: 26274176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous membrane formation and self-encapsulation of active rods in an inhomogeneous motility field.
    Grauer J; Löwen H; Janssen LMC
    Phys Rev E; 2018 Feb; 97(2-1):022608. PubMed ID: 29548202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation and collision of traveling bands in interacting deformable self-propelled particles.
    Yamanaka S; Ohta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012918. PubMed ID: 24580308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.