These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 20482712)

  • 1. A passively controlled biventricular support device.
    Gaddum NR; Timms DL; Pearcy MJ
    Artif Organs; 2010 Jun; 34(6):473-80. PubMed ID: 20482712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the response from a passively controlled biventricular assist device.
    Gaddum NR; Timms DL; Pearcy MJ
    Artif Organs; 2010 May; 34(5):393-401. PubMed ID: 20633154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive control of a biventricular assist device with compliant inflow cannulae.
    Gregory SD; Pearcy MJ; Timms D
    Artif Organs; 2012 Aug; 36(8):683-90. PubMed ID: 22882438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of preload-sensitive pressure and flow controller strategies for a dual device biventricular support system.
    Gaddum NR; Timms DL; Stevens M; Mason D; Lovell N; Fraser JF
    Artif Organs; 2012 Mar; 36(3):256-65. PubMed ID: 21955295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG; Lanning CJ; Stoica S; Wang R; Rech BA; Goldberg S; Shandas R
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.
    Trinkl J; Havlik P; Mesana T; Mitsui N; Morita S; Demunck JL; Tourres JL; Monties JR
    ASAIO J; 1993; 39(3):M237-41. PubMed ID: 8268535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bridge from short-term to long-term left ventricular assist device--experimental verification of a physiological controller.
    Wu Y; Allaire PE; Tao G; Adams M; Liu Y; Wood H; Olsen DB
    Artif Organs; 2004 Oct; 28(10):927-32. PubMed ID: 15385000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices.
    Timms D; Hayne M; McNeil K; Galbraith A
    Artif Organs; 2005 Jul; 29(7):564-72. PubMed ID: 15982285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system.
    Lanzarone E; Vismara R; Fiore GB
    Artif Organs; 2009 Dec; 33(12):1048-62. PubMed ID: 19604227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.
    Gregory SD; Schummy E; Pearcy M; Pauls JP; Tansley G; Fraser JF; Timms D
    Artif Organs; 2015 Feb; 39(2):102-9. PubMed ID: 25041754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).
    Nosé Y; Furukawa K
    Artif Organs; 2004 Oct; 28(10):953-8. PubMed ID: 15385004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The BiVACOR rotary biventricular assist device: concept and in vitro investigation.
    Timms D; Fraser J; Hayne M; Dunning J; McNeil K; Pearcy M
    Artif Organs; 2008 Oct; 32(10):816-9. PubMed ID: 18959670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.