These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 20482994)

  • 1. An amphiphilic nanocarrier based on guar gum-graft-poly(epsilon-caprolactone) for potential drug-delivery applications.
    Tiwari A; Prabaharan M
    J Biomater Sci Polym Ed; 2010; 21(6-7):937-49. PubMed ID: 20482994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graft polymerization of guar gum with acryl amide irradiated by microwaves for colonic drug delivery.
    Shahid M; Bukhari SA; Gul Y; Munir H; Anjum F; Zuber M; Jamil T; Zia KM
    Int J Biol Macromol; 2013 Nov; 62():172-9. PubMed ID: 23973495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucoadhesive guargum hydrogel inter-connected chitosan-g-polycaprolactone micelles for rifampicin delivery.
    Yuan X; Amarnath Praphakar R; Munusamy MA; Alarfaj AA; Suresh Kumar S; Rajan M
    Carbohydr Polym; 2019 Feb; 206():1-10. PubMed ID: 30553301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-Characterizations and application as matrix for controlled release of 5-amino salicylic acid.
    Sen G; Mishra S; Jha U; Pal S
    Int J Biol Macromol; 2010 Aug; 47(2):164-70. PubMed ID: 20471416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective of guar gum and its derivatives as controlled drug delivery systems.
    Prabaharan M
    Int J Biol Macromol; 2011 Aug; 49(2):117-24. PubMed ID: 21596058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery.
    Aryal S; Prabaharan M; Pilla S; Gong S
    Int J Biol Macromol; 2009 May; 44(4):346-52. PubMed ID: 19428465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, development and validation of guar gum based pH sensitive drug delivery carrier via graft copolymerization reaction using microwave irradiations.
    Mahto A; Mishra S
    Int J Biol Macromol; 2019 Oct; 138():278-291. PubMed ID: 31310787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin.
    Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M
    Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graft [partially carboxymethylated guar gum-g-poly N-(hydroxymethyl) acrylamide] copolymer: from synthesis to applications.
    Pandey VS; Verma SK; Behari K
    Carbohydr Polym; 2014 Sep; 110():285-91. PubMed ID: 24906757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications.
    Mishra S; Sen G
    Int J Biol Macromol; 2011 May; 48(4):688-94. PubMed ID: 21356236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery.
    Kaity S; Isaac J; Kumar PM; Bose A; Wong TW; Ghosh A
    Carbohydr Polym; 2013 Oct; 98(1):1083-94. PubMed ID: 23987450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel self-assembled amphiphilic poly(epsilon-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles.
    Sheikh FA; Barakat NA; Kanjwal MA; Aryal S; Khil MS; Kim HY
    J Mater Sci Mater Med; 2009 Mar; 20(3):821-31. PubMed ID: 19020953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphiphilic toothbrushlike copolymers based on poly(ethylene glycol) and poly(epsilon-caprolactone) as drug carriers with enhanced properties.
    Zhang W; Li Y; Liu L; Sun Q; Shuai X; Zhu W; Chen Y
    Biomacromolecules; 2010 May; 11(5):1331-8. PubMed ID: 20405912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of guar gum nanoparticles.
    Soumya RS; Ghosh S; Abraham ET
    Int J Biol Macromol; 2010 Mar; 46(2):267-9. PubMed ID: 19941891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diclofenac/biodegradable polymer micelles for ocular applications.
    Li X; Zhang Z; Li J; Sun S; Weng Y; Chen H
    Nanoscale; 2012 Aug; 4(15):4667-73. PubMed ID: 22732776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407.
    Bhowmik M; Kumari P; Sarkar G; Bain MK; Bhowmick B; Mollick MM; Mondal D; Maity D; Rana D; Bhattacharjee D; Chattopadhyay D
    Int J Biol Macromol; 2013 Nov; 62():117-23. PubMed ID: 23988556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier.
    Du JZ; Tang LY; Song WJ; Shi Y; Wang J
    Biomacromolecules; 2009 Aug; 10(8):2169-74. PubMed ID: 19722555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of guar gum templated hybrid nano silica.
    Singh V; Singh SK; Pandey S; Sanghi R
    Int J Biol Macromol; 2011 Aug; 49(2):233-40. PubMed ID: 21570998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chondroitin sulfate-g-poly(ϵ-caprolactone) co-polymer aggregates as potential targeting drug carriers.
    Wang LF; Ni HC; Lin CC
    J Biomater Sci Polym Ed; 2012; 23(14):1821-42. PubMed ID: 21943871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guar gum succinate as a carrier for colon-specific drug delivery.
    Seeli DS; Prabaharan M
    Int J Biol Macromol; 2016 Mar; 84():10-5. PubMed ID: 26675135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.