BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20482996)

  • 41. Gelatine/PLLA sponge-like scaffolds: morphological and biological characterization.
    Lazzeri L; Cascone MG; Danti S; Serino LP; Moscato S; Bernardini N
    J Mater Sci Mater Med; 2007 Jul; 18(7):1399-405. PubMed ID: 17277980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface modification of porous scaffolds with nanothick collagen layer by centrifugation and freeze-drying.
    Chen G; Okamura A; Sugiyama K; Wozniak MJ; Kawazoe N; Sato S; Tateishi T
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):864-72. PubMed ID: 19441114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A biodegradable hybrid sponge nested with collagen microsponges.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2000 Aug; 51(2):273-9. PubMed ID: 10825227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor.
    Ma Z; Gao C; Gong Y; Shen J
    Biomaterials; 2005 Apr; 26(11):1253-9. PubMed ID: 15475055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel cylinder-type poly(L-lactic acid)-collagen hybrid sponge for cartilage tissue engineering.
    He X; Lu H; Kawazoe N; Tateishi T; Chen G
    Tissue Eng Part C Methods; 2010 Jun; 16(3):329-38. PubMed ID: 19580420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation, cell compatibility and degradability of collagen-modified poly(lactic acid).
    Cui M; Liu L; Guo N; Su R; Ma F
    Molecules; 2015 Jan; 20(1):595-607. PubMed ID: 25569516
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells.
    McCullen SD; Zhu Y; Bernacki SH; Narayan RJ; Pourdeyhimi B; Gorga RE; Loboa EG
    Biomed Mater; 2009 Jun; 4(3):035002. PubMed ID: 19390143
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect.
    Kim JH; Linh NT; Min YK; Lee BT
    J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair.
    Pu F; Rhodes NP; Bayon Y; Chen R; Brans G; Benne R; Hunt JA
    Biomaterials; 2010 May; 31(15):4330-40. PubMed ID: 20219244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.
    Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro.
    Hu Y; Winn SR; Krajbich I; Hollinger JO
    J Biomed Mater Res A; 2003 Mar; 64(3):583-90. PubMed ID: 12579573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PLA/ β-TCP complex tubes: the mechanical properties and applications of artificial bone.
    Lou CW; Yao CH; Chen YS; Lu CT; Chen WC; Yen KC; Lin JH
    J Biomater Sci Polym Ed; 2012; 23(13):1701-12. PubMed ID: 21968651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional seeding of chondrocytes encapsulated in collagen gel into PLLA scaffolds.
    Ushida T; Furukawa K; Toita K; Tateishi T
    Cell Transplant; 2002; 11(5):489-94. PubMed ID: 12382679
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Preparation of porous polylactic-acid/ bone matrix gelatin composite as scaffold materials for bone-tissue engineering].
    Zhang YM; Li BX; Li J; Ma HQ; Zhao YP; Yuan L
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Dec; 26(12):1745-8. PubMed ID: 17259111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh.
    Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J
    Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells.
    Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH
    Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering.
    Dai W; Kawazoe N; Lin X; Dong J; Chen G
    Biomaterials; 2010 Mar; 31(8):2141-52. PubMed ID: 19962751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2.
    Niu X; Feng Q; Wang M; Guo X; Zheng Q
    J Control Release; 2009 Mar; 134(2):111-7. PubMed ID: 19100794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.