These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20483321)

  • 1. Mechanisms controlling cell size and shape during isotropic cell spreading.
    Xiong Y; Rangamani P; Fardin MA; Lipshtat A; Dubin-Thaler B; Rossier O; Sheetz MP; Iyengar R
    Biophys J; 2010 May; 98(10):2136-46. PubMed ID: 20483321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling network triggers and membrane physical properties control the actin cytoskeleton-driven isotropic phase of cell spreading.
    Rangamani P; Fardin MA; Xiong Y; Lipshtat A; Rossier O; Sheetz MP; Iyengar R
    Biophys J; 2011 Feb; 100(4):845-57. PubMed ID: 21320428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force transmission in migrating cells.
    Fournier MF; Sauser R; Ambrosi D; Meister JJ; Verkhovsky AB
    J Cell Biol; 2010 Jan; 188(2):287-97. PubMed ID: 20100912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading.
    Dubin-Thaler BJ; Hofman JM; Cai Y; Xenias H; Spielman I; Shneidman AV; David LA; Döbereiner HG; Wiggins CH; Sheetz MP
    PLoS One; 2008; 3(11):e3735. PubMed ID: 19011687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compaction of cell shape occurs before decrease of elasticity in CHO-K1 cells treated with actin cytoskeleton disrupting drug cytochalasin D.
    Schulze C; Müller K; Käs JA; Gerdelmann JC
    Cell Motil Cytoskeleton; 2009 Apr; 66(4):193-201. PubMed ID: 19235199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis.
    Ingber DE; Prusty D; Sun Z; Betensky H; Wang N
    J Biomech; 1995 Dec; 28(12):1471-84. PubMed ID: 8666587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic phase transitions in cell spreading.
    Döbereiner HG; Dubin-Thaler B; Giannone G; Xenias HS; Sheetz MP
    Phys Rev Lett; 2004 Sep; 93(10):108105. PubMed ID: 15447457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane waves driven by actin and Myosin.
    Shlomovitz R; Gov NS
    Phys Rev Lett; 2007 Apr; 98(16):168103. PubMed ID: 17501468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.
    Lacayo CI; Pincus Z; VanDuijn MM; Wilson CA; Fletcher DA; Gertler FB; Mogilner A; Theriot JA
    PLoS Biol; 2007 Sep; 5(9):e233. PubMed ID: 17760506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization and movement of keratocytes: a multiscale modelling approach.
    Marée AF; Jilkine A; Dawes A; Grieneisen VA; Edelstein-Keshet L
    Bull Math Biol; 2006 Jul; 68(5):1169-211. PubMed ID: 16794915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leading edge maintenance in migrating cells is an emergent property of branched actin network growth.
    Garner RM; Theriot JA
    Elife; 2022 Mar; 11():. PubMed ID: 35275060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of polarized assembly of actin filaments in cell motility.
    Carlier MF; Pernier J; Montaville P; Shekhar S; Kühn S;
    Cell Mol Life Sci; 2015 Aug; 72(16):3051-67. PubMed ID: 25948416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane tension in rapidly moving cells is determined by cytoskeletal forces.
    Lieber AD; Yehudai-Resheff S; Barnhart EL; Theriot JA; Keren K
    Curr Biol; 2013 Aug; 23(15):1409-17. PubMed ID: 23831292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoskeletal role in differential adhesion patterns of normal fibroblasts and breast cancer cells inside silicon microenvironments.
    Nikkhah M; Strobl JS; Peddi B; Agah M
    Biomed Microdevices; 2009 Jun; 11(3):585-95. PubMed ID: 19089620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actin, a central player in cell shape and movement.
    Pollard TD; Cooper JA
    Science; 2009 Nov; 326(5957):1208-12. PubMed ID: 19965462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale modeling of cell shape from the actin cytoskeleton.
    Rangamani P; Xiong GY; Iyengar R
    Prog Mol Biol Transl Sci; 2014; 123():143-67. PubMed ID: 24560144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological study of fibroblasts treated with cytochalasin D and colchicine using a confocal laser scanning microscopy.
    Ujihara Y; Miyazaki H; Wada S
    J Physiol Sci; 2008 Dec; 58(7):499-506. PubMed ID: 18928641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of in vitro cultured ameboid microglial cells migrating on Müller cell end-feet in the quail embryo retina.
    Tassi M; Calvente R; Marín-Teva JL; Cuadros MA; Santos AM; Carrasco MC; Sánchez-López AM; Navascués J
    Glia; 2006 Oct; 54(5):376-93. PubMed ID: 16886202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for microfilament-based contraction in branching morphogenesis of the ureteric bud.
    Michael L; Sweeney DE; Davies JA
    Kidney Int; 2005 Nov; 68(5):2010-8. PubMed ID: 16221201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes.
    Babayeva S; Zilber Y; Torban E
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F549-60. PubMed ID: 20534871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.