BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 20483448)

  • 21. Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils.
    Boularbah A; Schwartz C; Bitton G; Morel JL
    Chemosphere; 2006 May; 63(5):802-10. PubMed ID: 16213554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distributions and removal fluxes of trace metals in the water column of the Hung-Tsai Trough off southwestern Taiwan.
    Wei CL; Jiann KT; Wen LS; Sheu DD
    Mar Pollut Bull; 2012 Jun; 64(6):1122-8. PubMed ID: 22534408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques--the Rodalquilar (Southern Spain) mining district.
    Bagur MG; Morales S; López-Chicano M
    Talanta; 2009 Nov; 80(1):377-84. PubMed ID: 19782239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK.
    Shepherd TJ; Chenery SR; Pashley V; Lord RA; Ander LE; Breward N; Hobbs SF; Horstwood M; Klinck BA; Worrall F
    Sci Total Environ; 2009 Aug; 407(17):4882-93. PubMed ID: 19524999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast.
    Fang TH; Hwang JS; Hsiao SH; Chen HY
    Mar Environ Res; 2006 Mar; 61(2):224-43. PubMed ID: 16324739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluvial-controlled metal and As mobilisation, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands.
    Turner JN; Brewer PA; Macklin MG
    Sci Total Environ; 2008 May; 394(1):144-61. PubMed ID: 18289642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the importance of diffuse minewater pollution in a historically heavily coal mined catchment.
    Mayes WM; Gozzard E; Potter HA; Jarvis AP
    Environ Pollut; 2008 Jan; 151(1):165-75. PubMed ID: 17400351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia.
    Sultan K
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil.
    Lattuada RM; Menezes CT; Pavei PT; Peralba MC; Dos Santos JH
    J Hazard Mater; 2009 Apr; 163(2-3):531-7. PubMed ID: 18692306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh.
    Bhuiyan MA; Islam MA; Dampare SB; Parvez L; Suzuki S
    J Hazard Mater; 2010 Jul; 179(1-3):1065-77. PubMed ID: 20413217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sediment trace metal profiles in lakes of Killarney Park, Canada: from regional to continental influence.
    Belzile N; Chen YW; Gunn JM; Dixit SS
    Environ Pollut; 2004 Jul; 130(2):239-48. PubMed ID: 15158037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Groundwater contributions to metal transport in a small river affected by mining and smelting waste.
    Coynel A; Schäfer J; Dabrin A; Girardot N; Blanc G
    Water Res; 2007 Aug; 41(15):3420-8. PubMed ID: 17585986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality.
    Atanacković N; Dragišić V; Stojković J; Papić P; Zivanović V
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7615-26. PubMed ID: 23872888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry.
    Samecka-Cymerman A; Kempers AJ
    Ecotoxicol Environ Saf; 2004 Sep; 59(1):64-9. PubMed ID: 15261724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges.
    Suthar S; Nema AK; Chabukdhara M; Gupta SK
    J Hazard Mater; 2009 Nov; 171(1-3):1088-95. PubMed ID: 19616893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synoptic monitoring as an approach to discriminating between point and diffuse source contributions to zinc loads in mining impacted catchments.
    Banks VJ; Palumbo-Roe B
    J Environ Monit; 2010 Sep; 12(9):1684-98. PubMed ID: 20625579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary.
    Nieto JM; Sarmiento AM; Olías M; Canovas CR; Riba I; Kalman J; Delvalls TA
    Environ Int; 2007 May; 33(4):445-55. PubMed ID: 17196253
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.