These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 20483556)
1. Resonance Raman and UV-visible spectroscopy of black dyes on textiles. Abbott LC; Batchelor SN; Smith JR; Moore JN Forensic Sci Int; 2010 Oct; 202(1-3):54-63. PubMed ID: 20483556 [TBL] [Abstract][Full Text] [Related]
2. Raman spectroscopy and the forensic analysis of black/grey and blue cotton fibres Part 1: investigation of the effects of varying laser wavelength. Thomas J; Buzzini P; Massonnet G; Reedy B; Roux C Forensic Sci Int; 2005 Sep; 152(2-3):189-97. PubMed ID: 15978344 [TBL] [Abstract][Full Text] [Related]
3. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry. Was-Gubala J; Starczak R Appl Spectrosc; 2015; 69(2):296-303. PubMed ID: 25588115 [TBL] [Abstract][Full Text] [Related]
4. The evidential value of black cotton fibres. Grieve MC; Biermann TW; Davignon M Sci Justice; 2001; 41(4):245-60. PubMed ID: 11793882 [TBL] [Abstract][Full Text] [Related]
5. A further study of dye batch variation in textile and carpet fibres. Wiggins K; Holness JA Sci Justice; 2005; 45(2):93-6. PubMed ID: 16080322 [TBL] [Abstract][Full Text] [Related]
6. Raman spectroscopy and microspectrophotometry of reactive dyes on cotton fibres: analysis and detection limits. Massonnet G; Buzzini P; Monard F; Jochem G; Fido L; Bell S; Stauber M; Coyle T; Roux C; Hemmings J; Leijenhorst H; Van Zanten Z; Wiggins K; Smith C; Chabli S; Sauneuf T; Rosengarten A; Meile C; Ketterer S; Blumer A Forensic Sci Int; 2012 Oct; 222(1-3):200-7. PubMed ID: 22727570 [TBL] [Abstract][Full Text] [Related]
7. Characteristic dye absorption peaks found in the FTIR spectra of coloured acrylic fibres. Grieve MC; Griffin RM; Malone R Sci Justice; 1998; 38(1):27-37. PubMed ID: 9624811 [TBL] [Abstract][Full Text] [Related]
8. Identification of natural dyes on laboratory-dyed wool and ancient wool, silk, and cotton fibers using attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy and Fourier transform Raman spectroscopy. Bruni S; De Luca E; Guglielmi V; Pozzi F Appl Spectrosc; 2011 Sep; 65(9):1017-23. PubMed ID: 21929856 [TBL] [Abstract][Full Text] [Related]
9. The discrimination of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 1: in situ detection and characterization of dyes. Buzzini P; Massonnet G J Forensic Sci; 2013 Nov; 58(6):1593-600. PubMed ID: 24147967 [TBL] [Abstract][Full Text] [Related]
10. High-performance liquid chromatography-ultraviolet-visible spectroscopy-electrospray ionization mass spectrometry method for acrylic and polyester forensic fiber dye analysis. Petrick LM; Wilson TA; Ronald Fawcett W J Forensic Sci; 2006 Jul; 51(4):771-9. PubMed ID: 16882218 [TBL] [Abstract][Full Text] [Related]
11. Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Kavkler K; Demšar A Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):740-6. PubMed ID: 21190892 [TBL] [Abstract][Full Text] [Related]
12. Assessment of detection limits for dyed and mounted textile fibers using Raman spectroscopy. Rydzak PM; Elwick KE; Damaso N; Robertson JM J Forensic Sci; 2022 Nov; 67(6):2278-2290. PubMed ID: 36076332 [TBL] [Abstract][Full Text] [Related]
13. The importance of thin layer chromatography and UV microspectrophotometry in the analysis of reactive dyes released from wool and cotton fibers. Wiggins KG; Holness JA; March BM J Forensic Sci; 2005 Mar; 50(2):364-8. PubMed ID: 15813547 [TBL] [Abstract][Full Text] [Related]
14. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes. Was-Gubala J; Starczak R Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():118-25. PubMed ID: 25699701 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Raman spectroscopy for the analysis of colored fibers: a collaborative study. Massonnet G; Buzzini P; Jochem G; Stauber M; Coyle T; Roux C; Thomas J; Leijenhorst H; Van Zanten Z; Wiggins K; Russell C; Chabli S; Rosengarten A J Forensic Sci; 2005 Sep; 50(5):1028-38. PubMed ID: 16225207 [TBL] [Abstract][Full Text] [Related]
16. Application of Raman spectroscopy to forensic fibre cases. Lepot L; De Wael K; Gason F; Gilbert B Sci Justice; 2008 Sep; 48(3):109-17. PubMed ID: 18953798 [TBL] [Abstract][Full Text] [Related]
17. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy. Ali EM; Edwards HG; Hargreaves MD; Scowen IJ Anal Chim Acta; 2008 May; 615(1):63-72. PubMed ID: 18440364 [TBL] [Abstract][Full Text] [Related]
18. Surface-enhanced Raman spectroscopy (SERS) in cotton fabrics analysis. Puchowicz D; Giesz P; Kozanecki M; Cieślak M Talanta; 2019 Apr; 195():516-524. PubMed ID: 30625577 [TBL] [Abstract][Full Text] [Related]
19. Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts. Tian H; Wachs IE; Briand LE J Phys Chem B; 2005 Dec; 109(49):23491-9. PubMed ID: 16375323 [TBL] [Abstract][Full Text] [Related]
20. Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Cristóvão RO; Tavares AP; Ferreira LA; Loureiro JM; Boaventura RA; Macedo EA Bioresour Technol; 2009 Feb; 100(3):1094-9. PubMed ID: 18809317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]