BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 20484139)

  • 1. T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis.
    Fukushima A; Loh K; Galic S; Fam B; Shields B; Wiede F; Tremblay ML; Watt MJ; Andrikopoulos S; Tiganis T
    Diabetes; 2010 Aug; 59(8):1906-14. PubMed ID: 20484139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T cell protein tyrosine phosphatase (TCPTP) deficiency in muscle does not alter insulin signalling and glucose homeostasis in mice.
    Loh K; Merry TL; Galic S; Wu BJ; Watt MJ; Zhang S; Zhang ZY; Neel BG; Tiganis T
    Diabetologia; 2012 Feb; 55(2):468-78. PubMed ID: 22124607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TCPTP Regulates Insulin Signaling in AgRP Neurons to Coordinate Glucose Metabolism With Feeding.
    Dodd GT; Lee-Young RS; Brüning JC; Tiganis T
    Diabetes; 2018 Jul; 67(7):1246-1257. PubMed ID: 29712668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pancreatic T cell protein-tyrosine phosphatase deficiency affects beta cell function in mice.
    Xi Y; Liu S; Bettaieb A; Matsuo K; Matsuo I; Hosein E; Chahed S; Wiede F; Zhang S; Zhang ZY; Kulkarni RN; Tiganis T; Haj FG
    Diabetologia; 2015 Jan; 58(1):122-31. PubMed ID: 25338551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production.
    Inoue H; Ogawa W; Asakawa A; Okamoto Y; Nishizawa A; Matsumoto M; Teshigawara K; Matsuki Y; Watanabe E; Hiramatsu R; Notohara K; Katayose K; Okamura H; Kahn CR; Noda T; Takeda K; Akira S; Inui A; Kasuga M
    Cell Metab; 2006 Apr; 3(4):267-75. PubMed ID: 16581004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers.
    Shields BJ; Wiede F; Gurzov EN; Wee K; Hauser C; Zhu HJ; Molloy TJ; O'Toole SA; Daly RJ; Sutherland RL; Mitchell CA; McLean CA; Tiganis T
    Mol Cell Biol; 2013 Feb; 33(3):557-70. PubMed ID: 23166300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pu-erh tea extract ameliorates high-fat diet-induced nonalcoholic steatohepatitis and insulin resistance by modulating hepatic IL-6/STAT3 signaling in mice.
    Cai X; Fang C; Hayashi S; Hao S; Zhao M; Tsutsui H; Nishiguchi S; Sheng J
    J Gastroenterol; 2016 Aug; 51(8):819-29. PubMed ID: 26794005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducible nitric oxide synthase induction underlies lipid-induced hepatic insulin resistance in mice: potential role of tyrosine nitration of insulin signaling proteins.
    Charbonneau A; Marette A
    Diabetes; 2010 Apr; 59(4):861-71. PubMed ID: 20103705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress.
    Delibegovic M; Zimmer D; Kauffman C; Rak K; Hong EG; Cho YR; Kim JK; Kahn BB; Neel BG; Bence KK
    Diabetes; 2009 Mar; 58(3):590-9. PubMed ID: 19074988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP.
    Galic S; Hauser C; Kahn BB; Haj FG; Neel BG; Tonks NK; Tiganis T
    Mol Cell Biol; 2005 Jan; 25(2):819-29. PubMed ID: 15632081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 25-Hydroxyvitamin D
    Zhang P; Zhang W; Zhang D; Wang M; Aprecio R; Ji N; Mohamed O; Li Y; Ding Y; Wang Q
    J Periodontal Res; 2018 Jun; 53(3):467-477. PubMed ID: 29516520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2.
    Gurzov EN; Tran M; Fernandez-Rojo MA; Merry TL; Zhang X; Xu Y; Fukushima A; Waters MJ; Watt MJ; Andrikopoulos S; Neel BG; Tiganis T
    Cell Metab; 2014 Jul; 20(1):85-102. PubMed ID: 24954415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding.
    Oakes ND; Cooney GJ; Camilleri S; Chisholm DJ; Kraegen EW
    Diabetes; 1997 Nov; 46(11):1768-74. PubMed ID: 9356024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.
    Liu TY; Shi CX; Gao R; Sun HJ; Xiong XQ; Ding L; Chen Q; Li YH; Wang JJ; Kang YM; Zhu GQ
    Clin Sci (Lond); 2015 Nov; 129(10):839-50. PubMed ID: 26201094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of hepatic glucose production by human neutrophil alpha-defensins through a signaling pathway distinct from insulin.
    Liu HY; Collins QF; Moukdar F; Zhuo D; Han J; Hong T; Collins S; Cao W
    J Biol Chem; 2008 May; 283(18):12056-63. PubMed ID: 18347011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3-SOCS3 signal.
    Wang C; Dai J; Yang M; Deng G; Xu S; Jia Y; Boden G; Ma ZA; Yang G; Li L
    FEBS J; 2014 May; 281(9):2136-47. PubMed ID: 24593051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothalamic nesfatin-1/NUCB2 knockdown augments hepatic gluconeogenesis that is correlated with inhibition of mTOR-STAT3 signaling pathway in rats.
    Wu D; Yang M; Chen Y; Jia Y; Ma ZA; Boden G; Li L; Yang G
    Diabetes; 2014 Apr; 63(4):1234-47. PubMed ID: 24478398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoplasmic reticulum stress inhibits STAT3-dependent suppression of hepatic gluconeogenesis via dephosphorylation and deacetylation.
    Kimura K; Yamada T; Matsumoto M; Kido Y; Hosooka T; Asahara S; Matsuda T; Ota T; Watanabe H; Sai Y; Miyamoto K; Kaneko S; Kasuga M; Inoue H
    Diabetes; 2012 Jan; 61(1):61-73. PubMed ID: 22124464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary protein deprivation upregulates insulin signaling and inhibits gluconeogenesis in rat liver.
    Toyoshima Y; Tokita R; Ohne Y; Hakuno F; Noguchi T; Minami S; Kato H; Takahashi S
    J Mol Endocrinol; 2010 Nov; 45(5):329-40. PubMed ID: 20801894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis.
    Morón B; Spalinger M; Kasper S; Atrott K; Frey-Wagner I; Fried M; McCole DF; Rogler G; Scharl M
    PLoS One; 2013; 8(9):e73703. PubMed ID: 24040033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.