BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20484226)

  • 21. Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications.
    Hamonangan WM; Lee S; Choi YH; Li W; Tai M; Kim SH
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18159-18169. PubMed ID: 35426298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabricating High-viscosity Droplets using Microfluidic Capillary Device with Phase-inversion Co-flow Structure.
    Li J; Man J; Li Z; Chen H
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of monodisperse liposomes-in-microgel hybrid microparticles in capillary-based microfluidic devices.
    Jeong ES; Son HA; Kim MK; Park KH; Kay S; Chae PS; Kim JW
    Colloids Surf B Biointerfaces; 2014 Nov; 123():339-44. PubMed ID: 25288532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles.
    Martinez CJ; Kim JW; Ye C; Ortiz I; Rowat AC; Marquez M; Weitz D
    Macromol Biosci; 2012 Jul; 12(7):946-51. PubMed ID: 22311460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device.
    Xu S; Nisisako T
    Sci Rep; 2020 Mar; 10(1):4549. PubMed ID: 32165712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monodisperse polymeric particles prepared by ink-jet printing: double emulsions, hydrogels and polymer mixtures.
    Böhmer MR; Steenbakkers JA; Chlon C
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):47-52. PubMed ID: 20413282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microgel capsules tailored by droplet-based microfluidics.
    Seiffert S
    Chemphyschem; 2013 Feb; 14(2):295-304. PubMed ID: 23225762
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visualization Study of Oil-in-Water-in-Oil (O/W/O) Double Emulsion Formation in a Simple and Robust Co-Flowing Microfluidic Device.
    Lu P; Wu L; Liu X
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emulsion-templated liquid core-polymer shell microcapsule formation.
    Ao Z; Yang Z; Wang J; Zhang G; Ngai T
    Langmuir; 2009 Mar; 25(5):2572-4. PubMed ID: 19437681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One-step formation of multiple emulsions in microfluidics.
    Abate AR; Thiele J; Weitz DA
    Lab Chip; 2011 Jan; 11(2):253-8. PubMed ID: 20967395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials.
    Ribeiro de Souza L; Al-Tabbaa A
    Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymersomes containing a hydrogel network for high stability and controlled release.
    Kim SH; Kim JW; Kim DH; Han SH; Weitz DA
    Small; 2013 Jan; 9(1):124-31. PubMed ID: 22961742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of biodegradable liquid core PLLA microcapsules and hollow PLLA microcapsules using microfluidics.
    Lensen D; van Breukelen K; Vriezema DM; van Hest JC
    Macromol Biosci; 2010 May; 10(5):475-80. PubMed ID: 20336699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of porous hierarchical polymer/ceramic composites by electron irradiation of organic/inorganic polymers: route to a highly durable, large-area superhydrophobic coating.
    Lee EJ; Kim JJ; Cho SO
    Langmuir; 2010 Mar; 26(5):3024-30. PubMed ID: 20121048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic fabrication of photo-responsive hydrogel capsules.
    Kim B; Soo Lee H; Kim J; Kim SH
    Chem Commun (Camb); 2013 Mar; 49(18):1865-7. PubMed ID: 23361355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.