These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20484328)

  • 1. Automated analysis of protein subcellular location in time series images.
    Hu Y; Osuna-Highley E; Hua J; Nowicki TS; Stolz R; McKayle C; Murphy RF
    Bioinformatics; 2010 Jul; 26(13):1630-6. PubMed ID: 20484328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the subcellular location of new proteins from microscope images using local features.
    Coelho LP; Kangas JD; Naik AW; Osuna-Highley E; Glory-Afshar E; Fuhrman M; Simha R; Berget PB; Jarvik JW; Murphy RF
    Bioinformatics; 2013 Sep; 29(18):2343-9. PubMed ID: 23836142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting accuracy of automated classification of fluorescence microscope images for location proteomics.
    Huang K; Murphy RF
    BMC Bioinformatics; 2004 Jun; 5():78. PubMed ID: 15207009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells.
    Boland MV; Murphy RF
    Bioinformatics; 2001 Dec; 17(12):1213-23. PubMed ID: 11751230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein subcellular location pattern classification in cellular images using latent discriminative models.
    Li J; Xiong L; Schneider J; Murphy RF
    Bioinformatics; 2012 Jun; 28(12):i32-9. PubMed ID: 22689776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing.
    Coelho LP; Peng T; Murphy RF
    Bioinformatics; 2010 Jun; 26(12):i7-12. PubMed ID: 20529939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A graphical model approach to automated classification of protein subcellular location patterns in multi-cell images.
    Chen SC; Murphy RF
    BMC Bioinformatics; 2006 Feb; 7():90. PubMed ID: 16504075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated, systematic determination of protein subcellular location using fluorescence microscopy.
    García Osuna E; Murphy RF
    Subcell Biochem; 2007; 43():263-76. PubMed ID: 17953398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images.
    Boland MV; Markey MK; Murphy RF
    Cytometry; 1998 Nov; 33(3):366-75. PubMed ID: 9822349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated interpretation of subcellular patterns from immunofluorescence microscopy.
    Hu Y; Murphy RF
    J Immunol Methods; 2004 Jul; 290(1-2):93-105. PubMed ID: 15261574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle dependence of protein subcellular location inferred from static, asynchronous images.
    Buck TE; Rao A; Coelho LP; Fuhrman MH; Jarvik JW; Berget PB; Murphy RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1016-9. PubMed ID: 19963740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated image analysis of protein localization in budding yeast.
    Chen SC; Zhao T; Gordon GJ; Murphy RF
    Bioinformatics; 2007 Jul; 23(13):i66-71. PubMed ID: 17646347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model building and intelligent acquisition with application to protein subcellular location classification.
    Jackson C; Glory-Afshar E; Murphy RF; Kovacevic J
    Bioinformatics; 2011 Jul; 27(13):1854-9. PubMed ID: 21558154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved recognition of figures containing fluorescence microscope images in online journal articles using graphical models.
    Qian Y; Murphy RF
    Bioinformatics; 2008 Feb; 24(4):569-76. PubMed ID: 18033795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting multiclass learning with repeating codes and weak detectors for protein subcellular localization.
    Lin CC; Tsai YS; Lin YS; Chiu TY; Hsiung CC; Lee MI; Simpson JC; Hsu CN
    Bioinformatics; 2007 Dec; 23(24):3374-81. PubMed ID: 17956879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale automated analysis of location patterns in randomly tagged 3T3 cells.
    García Osuna E; Hua J; Bateman NW; Zhao T; Berget PB; Murphy RF
    Ann Biomed Eng; 2007 Jun; 35(6):1081-7. PubMed ID: 17285363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based spatiotemporal causality inference for protein signaling networks.
    Ruan X; Wülfing C; Murphy RF
    Bioinformatics; 2017 Jul; 33(14):i217-i224. PubMed ID: 28881992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated protein subcellular localization based on local invariant features.
    Li C; Wang XH; Zheng L; Huang JF
    Protein J; 2013 Mar; 32(3):230-7. PubMed ID: 23512411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore texture analysis in automated 3D breast ultrasound images for implanted lightweight hernia mesh identification: a preliminary study.
    Yang J; Li H; Wu J; Sun L; Xu D; Wang Y; Zhang Y; Chen Y; Chen L
    Biomed Eng Online; 2021 Feb; 20(1):23. PubMed ID: 33632226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.
    Abdulhay E; Mohammed MA; Ibrahim DA; Arunkumar N; Venkatraman V
    J Med Syst; 2018 Feb; 42(4):58. PubMed ID: 29455440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.