These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20484328)

  • 21. Efficient framework for automated classification of subcellular patterns in budding yeast.
    Huh S; Lee D; Murphy RF
    Cytometry A; 2009 Nov; 75(11):934-40. PubMed ID: 19753630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning-based CT texture analysis to predict HPV status in oropharyngeal squamous cell carcinoma: comparison of 2D and 3D segmentation.
    Ren J; Yuan Y; Qi M; Tao X
    Eur Radiol; 2020 Dec; 30(12):6858-6866. PubMed ID: 32591885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images.
    Weon C; Hyun Nam W; Lee D; Lee JY; Ra JB
    Med Phys; 2015 Jan; 42(1):335-47. PubMed ID: 25563273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images.
    Chen X; Murphy R
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1632-5. PubMed ID: 17272014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a systematics for protein subcelluar location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images.
    Murphy RF; Boland MV; Velliste M
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():251-9. PubMed ID: 10977086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward objective selection of representative microscope images.
    Markey MK; Boland MV; Murphy RF
    Biophys J; 1999 Apr; 76(4):2230-7. PubMed ID: 10096918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FogBank: a single cell segmentation across multiple cell lines and image modalities.
    Chalfoun J; Majurski M; Dima A; Stuelten C; Peskin A; Brady M
    BMC Bioinformatics; 2014 Dec; 15(1):431. PubMed ID: 25547324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Object type recognition for automated analysis of protein subcellular location.
    Zhao T; Velliste M; Boland MV; Murphy RF
    IEEE Trans Image Process; 2005 Sep; 14(9):1351-9. PubMed ID: 16190470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A framework for the automated analysis of subcellular patterns in human protein atlas images.
    Newberg J; Murphy RF
    J Proteome Res; 2008 Jun; 7(6):2300-8. PubMed ID: 18435555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From quantitative microscopy to automated image understanding.
    Huang K; Murphy RF
    J Biomed Opt; 2004; 9(5):893-912. PubMed ID: 15447010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Image-derived, three-dimensional generative models of cellular organization.
    Peng T; Murphy RF
    Cytometry A; 2011 May; 79(5):383-91. PubMed ID: 21472848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated recognition system to classify subcellular protein localizations in images of different cell lines acquired by different imaging systems.
    Tsai YS; Chung IF; Simpson JC; Lee MI; Hsiung CC; Chiu TY; Kao LS; Chiu TC; Lin CT; Lin WC; Liang SF; Lin CC
    Microsc Res Tech; 2008 Apr; 71(4):305-14. PubMed ID: 18069668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell shape characterization and classification with discrete Fourier transforms and self-organizing maps.
    Kriegel FL; Köhler R; Bayat-Sarmadi J; Bayerl S; Hauser AE; Niesner R; Luch A; Cseresnyes Z
    Cytometry A; 2018 Mar; 93(3):323-333. PubMed ID: 29077263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A semiautomatic segmentation method for prostate in CT images using local texture classification and statistical shape modeling.
    Shahedi M; Halicek M; Guo R; Zhang G; Schuster DM; Fei B
    Med Phys; 2018 Jun; 45(6):2527-2541. PubMed ID: 29611216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast automated cell phenotype image classification.
    Hamilton NA; Pantelic RS; Hanson K; Teasdale RD
    BMC Bioinformatics; 2007 Mar; 8():110. PubMed ID: 17394669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D small structure detection in medical image using texture analysis.
    Fei Gao ; Min Zhang ; Wu T; Bennett KM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6433-6436. PubMed ID: 28269719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of methods for generative modeling of cell and nuclear shape.
    Ruan X; Murphy RF
    Bioinformatics; 2019 Jul; 35(14):2475-2485. PubMed ID: 30535313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated interpretation of subcellular patterns in fluorescence microscope images for location proteomics.
    Chen X; Velliste M; Murphy RF
    Cytometry A; 2006 Jul; 69(7):631-40. PubMed ID: 16752421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated interpretation of protein subcellular location patterns: implications for early cancer detection and assessment.
    Murphy RF
    Ann N Y Acad Sci; 2004 May; 1020():124-31. PubMed ID: 15208189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.