These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 20484648)

  • 1. Evidence for specialized rhythm-generating mechanisms in the adult mammalian spinal cord.
    Frigon A; Gossard JP
    J Neurosci; 2010 May; 30(20):7061-71. PubMed ID: 20484648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chapter 2--the spinal generation of phases and cycle duration.
    Gossard JP; Sirois J; Noué P; Côté MP; Ménard A; Leblond H; Frigon A
    Prog Brain Res; 2011; 188():15-29. PubMed ID: 21333800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ankle and hip muscle afferent inputs on rhythm generation during fictive locomotion.
    Frigon A; Sirois J; Gossard JP
    J Neurophysiol; 2010 Mar; 103(3):1591-605. PubMed ID: 20089809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat.
    Stecina K; Quevedo J; McCrea DA
    J Physiol; 2005 Nov; 569(Pt 1):275-90. PubMed ID: 16141269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical entrainment of fictive locomotion in the decerebrate cat.
    Kriellaars DJ; Brownstone RM; Noga BR; Jordan LM
    J Neurophysiol; 1994 Jun; 71(6):2074-86. PubMed ID: 7931503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexor reflex afferents reset the step cycle during fictive locomotion in the cat.
    Schomburg ED; Petersen N; Barajon I; Hultborn H
    Exp Brain Res; 1998 Oct; 122(3):339-50. PubMed ID: 9808307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat.
    Perreault MC; Angel MJ; Guertin P; McCrea DA
    J Physiol; 1995 Aug; 487(1):211-20. PubMed ID: 7473250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.
    Stein PS; Victor JC; Field EC; Currie SN
    J Neurosci; 1995 Jun; 15(6):4343-55. PubMed ID: 7790913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group I disynaptic excitation of cat hindlimb flexor and bifunctional motoneurones during fictive locomotion.
    Quevedo J; Fedirchuk B; Gosgnach S; McCrea DA
    J Physiol; 2000 Jun; 525 Pt 2(Pt 2):549-64. PubMed ID: 10835053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexion Reflex Can Interrupt and Reset the Swimming Rhythm.
    Elson MS; Berkowitz A
    J Neurosci; 2016 Mar; 36(9):2819-26. PubMed ID: 26937018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator.
    Lafreniere-Roula M; McCrea DA
    J Neurophysiol; 2005 Aug; 94(2):1120-32. PubMed ID: 15872066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat.
    Guertin P; Angel MJ; Perreault MC; McCrea DA
    J Physiol; 1995 Aug; 487(1):197-209. PubMed ID: 7473249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat.
    McCrea DA; Shefchyk SJ; Stephens MJ; Pearson KG
    J Physiol; 1995 Sep; 487 ( Pt 2)(Pt 2):527-39. PubMed ID: 8558481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stumbling corrective reaction during fictive locomotion in the cat.
    Quevedo J; Stecina K; Gosgnach S; McCrea DA
    J Neurophysiol; 2005 Sep; 94(3):2045-52. PubMed ID: 15917325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
    Rybak IA; Stecina K; Shevtsova NA; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):641-58. PubMed ID: 17008375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat.
    Gossard JP; Brownstone RM; Barajon I; Hultborn H
    Exp Brain Res; 1994; 98(2):213-28. PubMed ID: 8050508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of locomotor cycle durations.
    Yakovenko S; McCrea DA; Stecina K; Prochazka A
    J Neurophysiol; 2005 Aug; 94(2):1057-65. PubMed ID: 15800075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.