These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20484775)

  • 21. How performing a repetitive one-legged stance modifies two-legged postural control.
    Burdet C; Vuillerme N; Rougier PR
    J Strength Cond Res; 2011 Oct; 25(10):2911-8. PubMed ID: 21912279
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual feedback induces opposite effects on elementary centre of gravity and centre of pressure minus centre of gravity motions in undisturbed upright stance.
    Rougier P
    Clin Biomech (Bristol, Avon); 2003 May; 18(4):341-9. PubMed ID: 12689784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Postural control in idiopathic scoliosis: comparison between healthy and scoliotic subjects].
    Silferi V; Rougier P; Labelle H; Allard P
    Rev Chir Orthop Reparatrice Appar Mot; 2004 May; 90(3):215-25. PubMed ID: 15211270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Performing saccadic eye movements modifies postural control organisation].
    Rougier P; Garin M
    Neurophysiol Clin; 2006; 36(4):235-43. PubMed ID: 17095413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.
    Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T
    J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative analysis of the center of gravity and center of pressure trajectory path lengths in standing posture: an estimation of active stiffness.
    Caron O; Gelat T; Rougier P; Blanchi JP
    J Appl Biomech; 2000 Aug; 16(3):234-47. PubMed ID: 11757569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attentional demands associated with augmented visual feedback during quiet standing.
    Kręcisz K; Kuczyński M
    PeerJ; 2018; 6():e5101. PubMed ID: 30042878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inter-individual variability in sensory weighting of a plantar pressure-based, tongue-placed tactile biofeedback for controlling posture.
    Vuillerme N; Chenu O; Pinsault N; Boisgontier M; Demongeot J; Payan Y
    Neurosci Lett; 2007 Jun; 421(2):173-7. PubMed ID: 17566646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Backward and forward leaning postures modelled by an fBm framework.
    Rougier P; Burdet C; Farenc I; Berger L
    Neurosci Res; 2001 Sep; 41(1):41-50. PubMed ID: 11535292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Center of gravity motions and ankle joint stiffness control in upright undisturbed stance modeled through a fractional Brownian motion framework.
    Rougier P; Caron O
    J Mot Behav; 2000 Dec; 32(4):405-13. PubMed ID: 11114233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of visual feedback on successive control mechanisms in upright quiet stance in humans assessed by fractional Brownian motion modelling.
    Rougier P
    Neurosci Lett; 1999 May; 266(3):157-60. PubMed ID: 10465697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson's disease and healthy elderly people: a proof-of-concept study.
    Lee BC; Thrasher TA; Fisher SP; Layne CS
    J Neuroeng Rehabil; 2015 Sep; 12():75. PubMed ID: 26329918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term effects on postural control can be evidenced using a seesaw.
    Rougier PR; Mathias M; Tanzi A
    Neurosci Lett; 2011 Jan; 488(2):133-7. PubMed ID: 21073920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How proprioceptive impairments affect quiet standing in patients with multiple sclerosis.
    Rougier P; Faucher M; Cantalloube S; Lamotte D; Vinti M; Thoumie P
    Somatosens Mot Res; 2007; 24(1-2):41-51. PubMed ID: 17558922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wearing shoes increasing dorsiflexion improves short-term but not long-term balance control in young healthy adults.
    Rougier PR; Lachaume F; Bourse J; Rogeon M; Monti A; Regueme SC
    J Biomech; 2009 Oct; 42(14):2268-72. PubMed ID: 19682691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does the type of visual feedback information change the control of standing balance?
    Dos Anjos F; Lemos T; Imbiriba LA
    Eur J Appl Physiol; 2016 Sep; 116(9):1771-9. PubMed ID: 27431210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual feedback of the centre of gravity to optimize standing balance.
    Lakhani B; Mansfield A
    Gait Posture; 2015 Feb; 41(2):499-503. PubMed ID: 25542399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining the preferred modality for real-time biofeedback during balance training.
    Bechly KE; Carender WJ; Myles JD; Sienko KH
    Gait Posture; 2013 Mar; 37(3):391-6. PubMed ID: 23022157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a visual biofeedback on the postural control in Parkinson's disease.
    Caudron S; Guerraz M; Eusebio A; Gros JP; Azulay JP; Vaugoyeau M
    Neurophysiol Clin; 2014 Jan; 44(1):77-86. PubMed ID: 24502908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.