These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 20485571)

  • 1. Gene transposition causing natural variation for growth in Arabidopsis thaliana.
    Vlad D; Rappaport F; Simon M; Loudet O
    PLoS Genet; 2010 May; 6(5):e1000945. PubMed ID: 20485571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complex genetic architecture of shoot growth natural variation in Arabidopsis thaliana.
    Marchadier E; Hanemian M; Tisné S; Bach L; Bazakos C; Gilbault E; Haddadi P; Virlouvet L; Loudet O
    PLoS Genet; 2019 Apr; 15(4):e1007954. PubMed ID: 31009456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana.
    Perchepied L; Kroj T; Tronchet M; Loudet O; Roby D
    PLoS One; 2006 Dec; 1(1):e123. PubMed ID: 17205127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pair of receptor-like kinases is responsible for natural variation in shoot growth response to mannitol treatment in Arabidopsis thaliana.
    Trontin C; Kiani S; Corwin JA; Hématy K; Yansouni J; Kliebenstein DJ; Loudet O
    Plant J; 2014 Apr; 78(1):121-33. PubMed ID: 24479634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.
    Bouteillé M; Rolland G; Balsera C; Loudet O; Muller B
    PLoS One; 2012; 7(2):e32319. PubMed ID: 22384215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology.
    Shindo C; Bernasconi G; Hardtke CS
    Ann Bot; 2007 Jun; 99(6):1043-54. PubMed ID: 17259228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping.
    Ehrenreich IM; Stafford PA; Purugganan MD
    Genetics; 2007 Jun; 176(2):1223-36. PubMed ID: 17435248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naturally occurring genetic variation in Arabidopsis thaliana.
    Koornneef M; Alonso-Blanco C; Vreugdenhil D
    Annu Rev Plant Biol; 2004; 55():141-72. PubMed ID: 15377217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana.
    Zhang L; Byrne PF; Pilon-Smits EA
    New Phytol; 2006; 170(1):33-42. PubMed ID: 16539601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family.
    Loudet O; Gaudon V; Trubuil A; Daniel-Vedele F
    Theor Appl Genet; 2005 Feb; 110(4):742-53. PubMed ID: 15678326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative trait loci affecting delta13C and response to differential water availibility in Arabidopsis thaliana.
    Hausmann NJ; Juenger TE; Sen S; Stowe KA; Dawson TE; Simms EL
    Evolution; 2005 Jan; 59(1):81-96. PubMed ID: 15792229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QTL analysis.
    Alonso-Blanco C; Koornneef M; van Ooijen JW
    Methods Mol Biol; 2006; 323():79-99. PubMed ID: 16739569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple loci and genetic interactions involving flowering time genes regulate stem branching among natural variants of Arabidopsis.
    Huang X; Ding J; Effgen S; Turck F; Koornneef M
    New Phytol; 2013 Aug; 199(3):843-57. PubMed ID: 23668187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in Arabidopsis thaliana.
    Kover PX; Valdar W; Trakalo J; Scarcelli N; Ehrenreich IM; Purugganan MD; Durrant C; Mott R
    PLoS Genet; 2009 Jul; 5(7):e1000551. PubMed ID: 19593375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought.
    El-Soda M; Kruijer W; Malosetti M; Koornneef M; Aarts MG
    Plant Cell Environ; 2015 Mar; 38(3):585-99. PubMed ID: 25074022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic control of leaf and petal allometric variations in Arabidopsis thaliana.
    Li X; Zhang Y; Yang S; Wu C; Shao Q; Feng X
    BMC Plant Biol; 2020 Dec; 20(1):547. PubMed ID: 33287712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.
    Salmon J; Ward SP; Hanley SJ; Leyser O; Karp A
    Plant Biotechnol J; 2014 May; 12(4):480-91. PubMed ID: 24393130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana.
    Oakley CG; Savage L; Lotz S; Larson GR; Thomashow MF; Kramer DM; Schemske DW
    J Exp Bot; 2018 Jan; 69(3):699-709. PubMed ID: 29300935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana.
    Harada H; Leigh RA
    J Exp Bot; 2006; 57(4):953-60. PubMed ID: 16488917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural allelic variation identifies new genes in the Arabidopsis circadian system.
    Swarup K; Alonso-Blanco C; Lynn JR; Michaels SD; Amasino RM; Koornneef M; Millar AJ
    Plant J; 1999 Oct; 20(1):67-77. PubMed ID: 10571866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.