These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20485574)

  • 21. Family of parametric second-order boundary schemes for the vectorial finite-difference-based lattice Boltzmann method.
    Zhang X; Feng M; Zhao J
    Phys Rev E; 2021 Nov; 104(5-2):055309. PubMed ID: 34942745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hysteresis and linear stability analysis on multiple steady-state solutions to the Poisson-Nernst-Planck equations with steric interactions.
    Ding J; Sun H; Zhou S
    Phys Rev E; 2020 Nov; 102(5-1):053301. PubMed ID: 33327140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixed bounce-back boundary scheme of the general propagation lattice Boltzmann method for advection-diffusion equations.
    Guo X; Chai Z; Pang S; Zhao Y; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063316. PubMed ID: 31330611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Padé via Lanczos approximations for efficient multifrequency solution of Helmholtz problems.
    Wagner MM; Pinsky PM; Malhotra M
    J Acoust Soc Am; 2003 Jan; 113(1):313-9. PubMed ID: 12558270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method.
    Zhang L; Yang S; Zeng Z; Chew JW
    Phys Rev E; 2018 Feb; 97(2-1):023302. PubMed ID: 29548227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Hybrid Semi-Lagrangian Cut Cell Method for Advection-Diffusion Problems with Robin Boundary Conditions in Moving Domains.
    Barrett A; Fogelson AL; Griffith BE
    J Comput Phys; 2022 Jan; 449():. PubMed ID: 34898720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reviving the local second-order boundary approach within the two-relaxation-time lattice Boltzmann modelling.
    Silva G; Ginzburg I
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190404. PubMed ID: 32564717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions.
    Hu Z; Huang J; Yong WA
    Phys Rev E; 2016 Apr; 93():043320. PubMed ID: 27176441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes.
    Chen Q; Zhang X; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033304. PubMed ID: 24125382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains.
    Li H; Guo Y
    Phys Rev E; 2017 Dec; 96(6-1):063305. PubMed ID: 29347376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains.
    Balam RI; Hernandez-Lopez F; Trejo-Sánchez J; Zapata MU
    Math Biosci Eng; 2020 Nov; 18(1):22-56. PubMed ID: 33525079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions.
    McFall KS; Mahan JR
    IEEE Trans Neural Netw; 2009 Aug; 20(8):1221-33. PubMed ID: 19497815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite difference method of simulation of non-steady-state ion transfer in electrochemical systems with allowance for migration.
    Volgin VM; Volgina OV; Davydov AD
    Comput Biol Chem; 2003 Jul; 27(3):185-96. PubMed ID: 12927095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coefficient datasets for high-order, stable, and conservative boundary schemes for central and compact finite differences.
    Brady PT; Livescu D
    Data Brief; 2019 Aug; 25():104086. PubMed ID: 31294052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compact fourth-order finite difference method for solving differential equations.
    Wilkinson PB; Fromhold TM; Tench CR; Taylor RP; Micolich AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):047701. PubMed ID: 11690185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Treatment of charge singularities in implicit solvent models.
    Geng W; Yu S; Wei G
    J Chem Phys; 2007 Sep; 127(11):114106. PubMed ID: 17887827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.
    Sarbach O; Tiglio M
    Living Rev Relativ; 2012; 15(1):9. PubMed ID: 28179838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.